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Tuning the Quantum Efficiency of 
Random Lasers - Intrinsic Stokes-
Shift and Gain
Andreas Lubatsch1,2 & Regine Frank3,4

We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. 
Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, 
is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and 
homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of 
the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the 
stationary state is found due to the increase of non-radiative losses. The coherently emitted photon 
number per unit of modal surface is also strongly reduced. This result allows for the conclusion that 
Stokes-shifts are not sufficient to explain confined and extended mode regimes.

The first description of stimulated emission was given by Albert Einstein in 1916 following the consid-
eration of Max Planck who connected a radiation field with the resonator mode. 44 years later Theodore 
Maiman presented the first experimental realization of a laser. Random lasers have been predicted in 
1967 by Lethokov1,2. They work in principle according to the same rules as the conventional laser, only 
one significant difference exists: The cavity on first sight is missing3. Solid state random lasers consist 
of strongly scattering material which provides amplification on the basis of multiple scattering proce-
dures. The amplifier consists of granular matter4 or a perforated amplifier, where the scattering strength 
is tuned with the density. The procedure is a random walk of the photon which is able to undergo 
interference effects if the coherence is not violated too much by inelastic scattering processes. However 
it does not exclude that incoherent light propagating through the sample additionally or even majorly 
inverts the electronic system of the material. Taking for granted that so called closed loops of traveling 
and interfering photons may occur, it is important to note that these effects are for sure not sufficiently 
strong to drive the system into lasing. They rather provide a large scale trigger which leads to stimulated 
emission on a well defined lasing area5. Hence the random laser could be a large scale single-mode 
laser if not local decoherence effects would actually detune it6. Local in this sense means that the local 
production of phonons at a certain position influences the energy conservation and naturally leads to 
a spectral broadening of the propagating photonic density. In combination with deviations in the local 
gain spectrum a multi-modal regime is unavoidable and experimentally observed. It is a challenge to 
tune the modal regime and select with respect to size, position and frequency several modes, and to 
deplete others7. A possible co-existence of extended and confined mode8, meaning a spatial overlap con-
sequently means that these modes must be energetically well separated due to their gain spectrum. The 
question we are answering in this article is, can we tune by temperature effects, the use of a Stokes-shift 
during light-matter interaction, a transition between two modal regimes, can phonons be used not just 
to tune the laser’s frequency but also to shape the mode and how flexible is this tuning? This ansatz is 
not to be compared with a vibrational detuning of mesoscopic transport processes9. Here we focus on 
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the electronic subsystem of the solid. The electronic transition probabilities are Stokes-detuned, which 
means we use a broadening of the photonic spectrum due to phonon production. Stokes-shifted photons 
have naturally a different mean free path and feature another absorption spectrum themselves. Such 
conversion increases the laser threshold of the original mode. When the number of converted photons 
is large, this mechanism leads to separate thresholds and so called distributed feedback lasers (DFB).

We focus our considerations here to a three dimensional thin sample that is displayed in Fig. 1. The 
sample is unbounded in-plane, meaning, it shall be very large compared to every other length scale in 
the random laser. Shown is a possible sketch of a monodisperse densly packed sample of zinc white 
(ZnO) spheres with a diameter of d =  260 nm. These spheres have bi-functional quality. They scatter 
light in the mesoscopic sense, but even more they absorb and amplify photonic intensity and act as the 
semi-conductor laser material. So we find two accumulation processes: First the mesoscopic accumu-
lation which is enhanced for an increased particle density and second a retardation effect through an 
enhanced life-time of the electron-photon coupling in the gain region of the electronic bandstructure. 
This property is special for pure ZnO solid state random lasers. The density of our sample is assumed for 
the here presented calculations to be of 50% volume filling fraction which corresponds to experimentally 
accessible values8. Due to the high filling the scattering mean free path ls of photons is comparably short 
and of the order of the wavelength of the scattered light. The transport velocity vt hence is drastically 
reduced by the high number of occurring scattering events. It has to be emphasized that mesoscopic 
processes act as accumulation mechanism of photon density whereas the lasing frequency is dominated 
by the materials absorption- and emission spectrum. The semi-conductor bandstructure however may 
change due to intense pumping processes.

If we allow a Stokes-conversion as loss mechanism within the medium, it has to be clarified how 
the spot sizes of random laser modes react on this losses. The spot size is intrinsically connected to the 
degree of photonic correlation on the one hand side as well as to the amount of coherently emitted lasing 
intensity on the other hand. Our results will give insight to the relation between spot size and coherent 
intensity which will question the interpretation of the lasing spot as a cavity. This leads ultimately to the 
question whether a co-existing modal regime is achievable by the Stokes-tuning or whether a transition 
between confined and extended modes is in principle unreachable by tuning the material e.g. chemically 
and homogeneously in space.

Laser Dynamics - Tuning via Stokes-Shift
In this work we consider ZnO nano-spheres providing the scattering and the gain-channels for ran-
dom lasing action. The impinging pump laser light separates electron and atomic core within the 
semi-conductor lattice structure of the bulk of the pumped nano-sphere. Excitonic states are created 
which melt for high excitation power due to short laser pulses to an electron hole plasma. We consider 
here quasistationary pumping of 1.8 MW/cm2 to 2.4 MW/cm2. To describe lasing action, the electronic 

Figure 1.  Sketch of experimentally relevant sample. Displayed is a powder of monodisperse ZnO grains, 
diameter of the grains is d =  260 nm. The volume filling of the sample is assumed to be about 50%. The 
sample shall be thin in the direction of the incident pump beam but infinite in-plane. The red and green 
paths mark the propagation direction of scattered photons (red) and their time-reversal symmetric processes 
(green). The full correlation includes all interferences in the theory. Within the spheres photons experience 
amplification through extended light-matter bound states as well Mie resonances. They can be seen as 
whispering gallery modes propagating inside the sphere and being reflected at the surface determined by the 
refractive index contrast, which enhance forward-scattering19.
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dynamics has to be accounted for10,11. For the atomic level laser rate system12 consisting of four coupled 
energy levels (see Fig. 2) we write
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In the preceeding equations Eq. (1), γP is the external pump rate for two photon pumping, n0−3 are 
electronic populations of the levels respectively, τij are the states’ lifetimes γ=

τ ij
1

ij
, τsp represents the 

spontaneous decay time and τ21 is the time scale of the lasing transition. τnr is the non-radiative decay 
time which denotes the investigated transition in order to tune the random laser via Stokes-shift. The 
term [n2(t) −  n1(t)]nPh(t) marks the inversion of the occupation numbers of level 1 and 2 proportional to 
the number of stimulated emitted photons nPh. All spatial coordinates are suppressed in Eq. (1) for the 
clarity of presentation, however it is noted that the photon numbers differ according to the position 
within the sample. The produced photon number nPh is to be read as stimulated emission per excited 
ZnO atom. The material is considered with a molar mass of 81,39 g · mol−1 and the density of 5,61 g · cm−3. 
The Stokes-shift frequency-converts a certain fraction of photons, whereas the loss (Stokes) or gain 
(anti-Stokes) of energy leads to a red or blue shift and so a broadening of the spontaneous emission 
spectra of ZnO. It has to be noted that in ZnO usually the Stokes shift is too small to generate another 
lasing mode. Also significant heating or cooling is expected to occur with a strong Stokes-shift. This 
however is not observed in ZnO but the frequency broadening is measured. Therefore the 
frequency-converted number of photons are simply considered as loss for the amplified mode. 
Consequently the non-linear feedback mechanism is working less efficiently and the threshold of the 
laser is increasing.

We will see in the following that not only the electronic procedures feel these losses, additionally 
interference effects described diagrammatically by maximally crossed diagrams (Cooperons) are reduced 
due to incoherent scattering. All transitions in the above described system are not independent of each 
other. The loss is intimately connected with the number of excited atoms and consequently with the 
pump intensity. This leads to the assumption that gain may compensate loss at some point, however the 
coherence properties of the resulting mode are fundamentally different than those of a mode in a passive, 
energy conserving medium.

Self-Consistent Transport Theory of Photons
In preceeding work it has been shown that diagrammatic transport13,14 gives precise results for diffusive 
and localizing photons in complex random media. We constitute a diagrammatic field theory ansatz for 

Figure 2.  Sketch of a 4-level laser rate system. Sinuous lines represent electronic procedures due to 
2-photon pumping, the excitation (green). Level 2 to 1: spontaneous emission (blue), stimulated emission 
(bright pink) and phonons (red).
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light in a diffusive system including interferences15,16 that incorporates non-linear effects and gain. All 
types of light-matter interactions depend not only on the material and the passive refractive index as well 
as the mobility of electrons, but further on the locally impinging light intensity, the photon number. It 
has to be pointed out, that the refractive index of the scatterers has to be renormalized selfconsistently 
due to intense pumping. This is equivalent to a shift of the gain spectrum with respect to impinging 
intensity taking into account in this case that the threshold of a random laser is defined as the stationary 
state. Consequentially we treat second order non-linear response of the bulk material when the order 
is defined in the electromagnetic field E. It has been seen in the previous section, that gain processes 
–Imϵs lead to a retardation of coherent intensity due to a finite life-time of the electronic excitation. ϵs 
is the permittivity of the scatterer. Frequency conversion, in other words spectral loss or gain, leads to 
a change of the photon statistics respectively. The refractive index of the material is responding to these 
processes and especially it is responding due to spatially non-uniform or non-homogeneous procedures. 
These procedures are present in every system containing any boundary, meaning in any realistic setup.

Theoretically the non-linearity is established by a doubly nested self-consistency: In the following we 
line out the description for correlation and coherence of light in terms of the electromagnetic wave and 
the photon as particle.

The photon density response, the four-point correlator is derived from the Bethe-Salpeter equation 
of photons,
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The indices mark independent positions within space. Primes denote the selfconsistency procedure 
of the diagram. The irreducible vertex γ in Eq. (2) is the heart of the formalism. It contains all possible 
interference effects enhanced by maximally crossed diagrams (Cooperons) which lead to a sophisticated 
current relaxation kernel, the memory term that renormalizes the diffusion constant D. We empha-
size here that we assume independent monodisperse scatterers here and the Cooperon diagram is the 
leading order diagram under ensemble average where physically relevant system size is larger than the 
wavelength of light. The importance of the Cooperon has been clearly proven from our considerations 
of Anderson localizing systems in transmission with qualitative as well as quantitative validity13. The 
memory kernel is crucial for the random laser mode. It establishes spatial correlation and coherence 
whereas the temporal coherence of lasing emission is driven by the interplay between these transport 
processes and the non-linear response of the material. The Ward identity as such is the vital feature in 
photonic transport and in diagrammatic theory of two-particle propagators in general. It connects the 
single-particle Feynman-graph with the two-particle quantity17,18 in conserving media (Imϵs =  Imϵb =  0), 
and in recent work15 it is generalized to guarantee local energy conservation, or specifically energy 
non-conservation for complex matter.

We write the Bethe-Salpeter equation as Boltzmann- or kinetic equation Eq. (4). The Fourier transfor-
mation and the expansion into momenta yields the exact continuity equation for the correlator Φ  with 
spatial dependencies due to the loss channels at the boundaries of the finite system and additionally the 
current density relation.
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Δ G =  GR −  GA. p, p′  and p″  are momenta. The scatterer’s geometric properties are represented within 
the self-consistent complex valued scattering matrices T of the Schwinger-Dyson equation G =  G0 +  G0TG 
which leads to the solution for the Green’s function GR and GA of the electromagnetic field, the light wave. 
The ZnO scatterer’s initial permittivity is given by Reϵs =  4.0164, the imaginary part Imϵs, the micro-
scopic gain, is computed self-consistently yielding gain saturation. The photon density emitted from the 
amplifying Mie particles is derived by means of coupling to the rate equation system (see previous sec-
tion). It is self-consistently connected the dielectric function ϵ =  ϵL +  ϵNL. Finally we arrive at nonlinear 
feedback in both, electromagnetic wave transport and photon intensity transport for scalar waves. The 
scalar approach is especially suitable to model absolutely randomized particle systems. Further the Mie 
character develops with reducing particle size into a Rayleigh scatterer and strong non-isotropies which 
might influence the vector-character are consequentially not given. Only in setups of pronounced Mie 
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type scatterers as well as order or quasi-order we expect the vector-character of light to become important. 
Random lasing in such setups has not been investigated theoretically as well as experimentally so far.

Within grand canonical (open) ensembles of random lasers the entropy is increased by photonic 
intensity transport processes. Nevertheless transport in the meaning at hand is based on the time reversal 
symmetry of the single particle Green’s function  ω=  ( / ) − − Σ 

ω −G c qb q
2 2 1

 describing the propaga-
tion of the electromagnetic wave. This time reversal symmetry is diagrammatically not broken. We 
describe the laser dynamics within a laser rate equation system that is suitable for non-linear processes 
or quantum cascades12. The advantage is obvious since nonradiative decay processes within that system 
act directly on the electronic subsystem, the particle, and so enter directly the non-linear complex refrac-
tive index and the self-energy Σ  of the single independent Mie scatterer, modelled as the complex scat-
tering or T matrix. For clarity it shall be pointed out that the complex refractive index acts equally 
absorbing or emitting under time reversibility. Microcanonically the time evolution is flipped, however 
the system evolves grand-canonically open14.

The described procedure of modeling disorder and dissipation guarantees the completeness of the 
‘ab initio’ description of the propagating light intensity by the four-point correlator Φ  =  AΦ ϵϵ +  BΦ Jϵ 
here given in terms of the momenta. Φ ϵϵ equals the energy density and Φ Jϵ equals the energy current, A 
and B are pre-factor terms derived in16. The framework yields all specific transport characteristics, e.g. 
the scattering mean free path ls and includes all interference effects. The mode is described efficiently 
by the determination of the correlation length ξ with respect to various loss channels. This length ξ in 
non-linear systems marks a decay of the intensity to 1/e. It is of a qualitative different importance than 
the localization length in the Anderson sense14, because the diffusion constant is D≠0 in complex media. 
In other words, the state in this case has a finite lifetime compared to the immanent infinite lifetime of 
an Anderson localized state in a passive system. The Bethe-Salpeter equation is solved in a sophisticated 
regime of real space and momentum and the description for the energy density Φ ϵϵ(Q, Ω ) is derived 
which is computed regarding energy conservation
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The numerator Nω is the local density of photonic modes LDOS renormalized due to amplification 
and absorption of the electromagnetic wave. Q equals the center of mass momentum of the propagator 
denoted in Wigner coordinates, Ω  is the center of mass frequency and D is the self-consistently derived 
diffusion constant. c1, c2 are coefficients having a non-trivial form of only numerical relevance. Following 
the formal analytical structure of ref. 16 up to the result of Eq. (28) under the additional assumption of 
boundaries as well as the coupling to laser rate equations (Eq. (1)) leads actually to some more sophis-
ticated term. This result has to be reformed algebraically until it fits in it’s structure a formal diffusion 
pole again. The above mentioned form of the energy density Φ ϵϵ (Eq.  (5)) emerges. A divergence, that 
is marked by critical scales in the unlimited system of16, is here instead replaced by the phase transition 
towards lasing. Consequentially modes derived as the characterising result here equal not only coherent 
transport of photons but they rather equal lasing modes caused by the inverted electronic sub-system in 
quasi-equilibrium, the stationary state.

The structure of the Bethe-Salpeter equation and the diffusion pole will be discussed in the following. 
The excitation process is uniform in space. Interferences gain weight on long paths in-plane of the large 
scaled random laser sample. The physics of maximally crossed diagrams therefore significantly domi-
nates the coherence properties: Dissipation and losses due to spontaneous emission and non-radiative 
decay are in principle homogeneous, however they depend of course very well on the impinging energy 
density and the resulting non-linear response. As consequence these properties change with the position 
relative to the samples boundaries if the latter are lossy. All channels are represented within the pole of 
Eq.  (5) resulting in separate dissipative length scales ζ due to homogeneous losses, and χd due to gain 
and absorption that go along with photonic transport and the open or strongly absorbing boundaries. 
All dissipation processes enter the mass term of the diffusion equation:
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By solving of the non-classical diffusion equation Eq. (6) the coefficients c1 and c2 are selfconsistently 
derived. Non-classical is defined as to consider light, as explained above, diagrammatically not just as 
a wave but in addition as particle (photon) current. Finally, we derive the spatial distribution of energy 
density:
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The nonlinear self-consistent microscopic random laser gain γ21n2 incorporates the influences of both 
length scales χd and ζ,

χ ζ
γ

−
+ = ,

( )

D D n
8d

2 2 21 2

and therefore represents the physical properties of the random laser samples within the absorptive 
boundaries. γ21 is the transition rate of stimulated emission and n2 equals the selfconsistent occupation 
of the upper laser level. The abbreviation ASE on the right of Eq. (7) represents all transport terms yield-
ing amplified spontaneous emission.

Results and Discussion
In the previous sections we developed a model for transport in strongly scattering, dense particle 
agglomerates. Non-linear gain and gain saturation is included in the model Fig. 2 by the coupling to a 
rate equation system, describing the full lasing dynamics Eq. (1).

In Fig.  3 we display the onsight on a lasing sample derived by calculations for co-existing random 
lasing modes of ZnO powder on GaAs substrate. The co-existence is explained by a sharp spectral sep-
aration of both mode types. Extended modes may only be developed due to absorption at the samples 
boundaries as it has been shown in5. In these calculations the non-radiative decay γnr is assumed to be 
0, so the sample features only losses at the boundaries towards the substrate and out of plane in z–direc-
tion. Lasing principle occurs in all D =  3 dimensions but lasing intensity escapes the sample only in the 
z–direction. Under the additional premise that the observed lasing frequency is not absorbed at the 
samples boundaries in-plane (x −  y −  plane), which means the sample size is infinite compared to the 
mean free path ls, confined modes arise Fig. 3(a). Our result is experimentally confirmed in samples of 
ZnO on SiO and GaAs8.

We are tuning now the phonon-production rate in order to investigate thermal loss as an adjust-
ment process for random laser modes. This is equivalent with a microscopic detuning of the electronic 
subsystem, in other words a modified quantum efficiency. Phonon production as a homogeneous rated 
process in the whole system in first instance reduces of course spontaneous emission and therefore 
rises the laser threshold as such. As a second process that is subtle but even more important, it reduces 
coherent scattering and interference effects. Long range interferences, represented in the Cooperon dia-
gram, however, trigger stimulated processes on large scales. If they are reduced, not only the amount of 

Figure 3.  Computed coherent lasing intensity distribution (color bar). The ZnO scatterers, diameter 
d =  260 nm, filling 50%, are embedded in a lossy substrate i.e. GaAs or SiO. The dimensions are 
Wx =  20.0 μm, Wy >>  40.0 μm, Wz =  4.0 μm. Results are shown for homogeneous 2-photon pumping 
λ =  355 nm (bandedge of ZnO bulk). (a) Confined mode. Emission energy is 3.23 eV, the transport mean 
free path ls =  499.2 nm. Shown is the result onsight on the samples section of 20.0 μm ×  20.0 μm, the mode 
features no absorption at the samples edges. However the underlying substrate is absorbing. (b) Extended 
mode. Sample section 20.0 μm ×  40.0 μm. The profiles above the color coded plots show the normalized 
coherent intensity I of each mode. The difference due to lossy boundaries in (b) is evident by comparing the 
decay to 1/e (vertical lines in (a) and (b)). The phonon-production in this calculation is γNR =  0.
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coherently emitted intensity is smaller, also the modes diameters generally are small Fig. 4. The sample 
is changing it’s quality from the laser, which features a phase transition at the threshold, towards a so 
called super-radiating system that has the functionality of a large area light-emitting diode (LED). In 
Eq.  (7) the last term responsible for amplified spontaneous emission (ASE) gradually is increased. The 
numerical analysis at the laser threshold can be found in Fig. 3(a) and 4. For the confined modes it is 
found, that they behave non-linear when the phonon-production is modified. In Fig. 4 the diameter of 
the mode with varying γNR is displayed. γNR is running over 0.0..1.4 in units of the spontaneous transition 
rate. The dots on the curve mark equidistant steps of 0.2. It is found in the deviation from the red line 
that the decrease of the diameter is non-linearly behaving with the loss. Also the photon emission rate 
shows a non-linearity but with an opposite impact. The distance between the dots for increasing γNR is 
decreasing. This can be understood in the picture of the Cooperon as the stimulating process for lasing 
radiation as explained above.

Both modal regimes are not just simply varying in their diameter, they are in our theory rather 
different from the fundamental point of view. It can be excluded that non-radiative tuning will cause 
another modal regime like an extended mode covering the whole sample as displayed in Fig. 3(b). This 
transition is not to be explained as an intrinsic Stokes-shift. It is further noted that the extended mode, 
which is connected by loss to the surrounding substrate suffers through additional non-radiative losses 
in intensity. The amount of coherently emitted intensity is reduced. However their mode diameters are 
almost insensitive to that loss type because they are pinned to the bondaries.

Summary and Conclusion
We have shown in this work co-existing extended and confined random laser modes. Extended modes 
occur according to our results definitely due to boundary absorption. Tuning the quantum efficiency of 
large samples of random lasers by means of non-radiative decay leads to a modulation of the lasing spot 
size of the modes in the confined regime. However, in our framework we derive a non-linear depend-
ency and a decrease of the spot diameters with an increasing phononic action. The transition from 
confined to extended modes, so the drastic increase of the mode diameter, is certainly not reachable by 
temperature or phonon production. Additionally we have found in our theoretical analysis evidence that 
the Cooperon contribution is reduced by absorption and supported by gain procedures even though 
the Anderson transition in it’s original sense is not given in open random media. However it will be 
extremely interesting to understand these fundamental procedures and to find out numerically in detail, 
how the interplay of diffusion and localization procedures is responding to gain. Up to our knowledge 
such a study has not been performed yet.
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clearly enhanced dependent to strong losses and the mode diameter is reduced about %30 . It is evident that 
the mode is continuously decreased in the confined regime.
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