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Abstract A gas of ultracold interacting quantum degen-

erate Fermions is considered in a three-dimensional optical

lattice which is externally modulated in the frequency and

the amplitude. This theoretical study utilizes the Keldysh

formalism to account for the system being out of thermo-

dynamical equilibrium. A dynamical mean field theory,

extended to non-equilibrium, is presented to calculate

characteristic quantities such as the local density of states

and the non-equilibrium distribution function. A dynamic

Franz–Keldysh splitting is found which accounts for the

non-equilibrium modification of the underlying band-

structure. The found characteristic Floquet-fan like band-

structure accounts for the quantized nature of the effect

over all frequency space.

1 Introduction

Non-equilibrium physics is often counter-intuitive at first

instance and additionally has often been neglected due to

the sophisticated methods needed in order to theoretically

describe such phenomena. This is even more unfortunate,

given that non-equilibrium surrounds us every day in real

life, e.g., in hydrodynamic flows. Let’s start with some

simple thoughts to explain the formalism: If we consider as

‘toy-model,’ e.g., a simple two-body problem, it is well

known that one can transform the whole system in a center-

of-mass problem, and a problem which refers to the rela-

tive coordinates with respect to that center of mass. So far

everything is straightforward. If one considers equilibrium

physics in the interaction of the two bodies, all processes

can be described in terms of the relative coordinates. The

center of mass is resting in space and time, or it is moving

uniformly. When we consider non-equilibrium processes,

the situation changes significantly. The center of mass may

exhibit a distinctly different behavior in driven, i.e., non-

equilibrium systems. Furthermore, the number of equations

or sets of equations required to adequately describe a given

system are usually increased. Partially and among other

reasons, this is also due to account for the dynamics of the

center of mass. Because of the center-of-mass dynamics,

there may be a significant amount of energy ‘stored’ or

contained in these dynamics. That amount of stored energy

consequently does not affect the two-body body system

directly, to be more precise an imaginary observer on either

of the two bodies will not ‘see’ the results due to the

center-of-mass dynamics as he is affected by the dynamics

of relative coordinates. In this imaginary setup, the outer

world is, however, also sensitive to the center-of-mass

dynamics, which may change the system behavior signifi-

cantly, as compared to systems without such center-of-

mass dynamics.

When we consider ultracold gases, as investigated in

various exciting experiments [1–8] in optical lattices in

non-equilibrium, we take exactly the point of view into

account which is described above: The behavior of the

atoms in their own frame of reference is not affected by

non-equilibrium, they obey the physics with respect to their

equilibrium ground state. Alas the bandstructure, the
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dispersion relation which can be measured by the observer

from outside is significantly changed. The system all

together in non-equilibrium takes a new ground state as

reference, and the equilibrium ground state becomes

irrelevant. In consequence, that fact leads, e.g., to a sig-

nificant aberrance of the ground state from the Fermi edge

for ultracold Fermions in optical lattices even as a state of

half filling is considered. Furthermore, it is clear that the

equilibrium state is not to be reached ‘smoothly’ from an

excited state by decreasing the energy, but that process

represents, in fact, a phase transition. Within this article, an

ultracold fermionic many particle quantum system on a

lattice is studied. The lattice is modulated by vibrations,

and the dynamical response is calculated by raise of the

modulations’ amplitude for various frequencies. These

systems are the most ideal setups to study Hubbard physics

in non-equilibrium setups.

2 Model and theory

The physical system under consideration is comprised of

an optical lattice in three dimensions (3D) which is loaded

with an ultracold atomic gas. The gas consists of fermi-

onic atoms with a strong repulsive on-site interaction, i.e.,

a strongly correlated system. The 3D optical lattice,

formed by pairs of counter-propagating laser beams, is

externally tuned such that the potential strength of the

formed lattice changes in a highly controllable way.

Consequently, the intrinsic properties of the lattice, such

as hopping amplitude or on-site energy, change accord-

ingly. The modulation of the lattice shall be oscillatory in

time but otherwise constant. This means the potential

depth experienced by an atom at a given site oscillates

around fixed value.

The considered system of ultracold fermions placed in

an optical lattice with temporal modulations can be

described by the following Hamiltonian

HðsÞ ¼
X

i;r

�0 þ eEðsÞ
� �

c
y
i;rci;r

�
X

hi;ji;r
t þ eT ðsÞ
� �

c
y
i;rcj;r þ

U

2

X

i;r

c
y
i;rci;rc

y
i;�rci;�r

ð1Þ

where the first term on the right-hand side (rhs) represents

the on-site energy of the atoms, the second term on the rhs

represents the kinetic or hopping contribution between

nearest neighbor lattice sites and the last term on rhs rep-

resents the repulsive interaction with strength U between

two atoms located at the same lattice site. The letter s
marks the dependence on time, �0 is the equilibrium or

static on-site energy, whereas eEðsÞ is the time-dependent

contribution or modulation of this on-site energy. The

hopping in this time-dependent model is modified likewise,

t is the regular hopping amplitude of an atom between two

adjacent lattice sites and eT ðsÞ is its time-dependent mod-

ification. If two atoms reside at the very same lattice site,

they encounter a repulsive interaction of strength U, and

this interaction strength is, however, not to be modified by

temporal changes due to its overwhelming strength as

compared to the possible time-dependent changes. The

operators c
y
i;r and ci,r create and annihilate an atom at

lattice site i with spin r in Eq. (1). Furthermore, the symbol

hi; ji refers to a sum over nearest neighbors only.

Throughout this paper, the time-dependent modulations

of the lattice, and therefore also of the on-site energies and

hopping amplitudes, are assumed to be periodic in time.

Consequently, the time-dependent contributions in Eq. (1)

are assumed to be of the form

eEðsÞ ¼ E cos Xsð Þ ð2Þ
eT ðsÞ ¼ T cos Xsð Þ ð3Þ

where X represents the frequency which is used to modu-

late the lattice. A careful choice of parameters E and

T guarantees that no sign change as a function of time s
will occur in the Hamiltonian H(s), Eq. (1).

At this point, it is worth noting two important points

concerning the theory. First, due to the external driving

of the optical lattice, the system can not reside in a state

of thermodynamical equilibrium and therefore requires

special care, intrinsic to the treatment of non-equilibrium

systems, as proposed by Schwinger and Keldysh [9]. In a

non-equilibrium system, the current state and also

physical quantities, such as, e.g., the density of states,

depend always on two time arguments, for instance, a

starting time and the elapsed time, or equally a relative

time and a center-of-mass time. In contrast, in equilib-

rium theory, there is usually only one time coordinate

needed, the relative time, since the center-of-mass time

cannot change any physics. However, in the considered

non-equilibrium system, physical quantities depend on

two time arguments. An appropriate formalism to con-

sistently describe such systems using, e.g., diagrammatic

descriptions, has been developed first by Schwinger and

then by Keldysh [9], by introducing a Green’s function

according to

Gðs1; s2Þ ¼
Gþþðs1; s2Þ Gþ�ðs1; s2Þ
G�þðs1; s2Þ G��ðs1; s2Þ

� �
ð4Þ

where the superscripts depend on which branch of the

Schwinger–Keldysh–Schwinger contour the time

arguments reside. To give an explicit example, G??(s1,

s2) refers to a situation, where s1 and s2 are both the upper

(?) contour path. By using a rotation R, given by
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R ¼ 1ffiffiffi
2
p 1 �1

1 1

� �
; ð5Þ

in the so-called Keldysh space, the Keldysh Schwinger

Green’s function may also be written in the form

Gðs1; s2Þ ¼ 0 Gadvðs1; s2Þ
Gretðs1; s2Þ Gkeldðs1; s2Þ

� �
ð6Þ

where Gadv and Gret are the well-known advanced and

retarded components of the Green’s function, and Gkeld (s1,

s2) represents the Keldysh component of the Green’s

function. As in equilibrium physics, the advanced and

retarded parts are connected to the actual state of the

system, i.e., its spectral weight and the density of states,

whereas the Keldysh component additionally includes

information on the non-equilibrium distribution.

Especially, the latter point will be utilized later on to find

the according non-equilibrium distribution function. The

second point to note here is the strictly periodic nature of

the modulation, which allows for the use of the so-called

Floquet theory [10]. In order to take full advantage of these

conditions, it is appropriate to change to Fourier space and

using a momentum and frequency description. As detailed

above, the description of non-equilibrium systems requires

the use of two independent time arguments and

consequently requires a two-time Fourier transform

towards the corresponding two-frequency expression. The

relative frequency x is the very same as known from

equilibrium theory, and the center-of-mass frequency

corresponds to the modulation frequency of the optical

lattice X. In particular, the employed Fourier transform

reads

Gab
mnðk;x;XÞ ¼

Zþ1

�1

dsrel

1

T

ZþT =2

�T =2

dscmeiðxmþn
2

XLÞsrel

� eiðmnÞXLscm Gabðk; srel; scmÞ

ð7Þ

where the Greek superscripts denote the Keldysh indices,

i.e., a and b may assume the values ? or - depending on

which branch of the Keldysh contour the time arguments

reside. The subscripts m and n label the Floquet index,

i.e., they account for the number of absorbed or emitted

lattice quanta �hX: The quantity T in Eq. (7) is the time

period T ¼ 2p
X ; the system time is shifted to a center of

motion time scm ¼ s1þs2

2
and a relative time coordinate

srel = s1 - s2. The resulting Keldysh-Schwinger-Flo-

quet-Green’s function is therefore a matrix Green’s

function of dimension 2 9 2 in Keldysh space and of

dimensions (2n ? 1) 9 (2m ? 1) in Floquet space. In

numerical evaluations, a size of 21 9 21 has been used in

Floquet space, corresponding to a consideration of

emission and absorption of up to 10 lattice quanta at the

same time (10 phonon processes). Combinations of these

techniques Schwinger–Keldysh technique with the Flo-

quet formalism have been considered for some time see,

e.g., [13–15].

The Hamiltonian, Eq. (1), including the finite on-site

interactions, is solved at zero temperature and at half

filling of the lattice sites by extending an equilibrium

dynamical mean field theory (DMFT), see, for instance,

reference [11], towards accounting for this non-equi-

librium situation by including the Floquet-Keldysh-

Green’s function described in Eq. (7). This DMFT maps

the non-equilibrium interacting lattice system onto a

local impurity system, still out of thermal equilibrium,

by assuming a local on-site self-energy. This is in some

way comparable to the light-matter interaction consid-

ered in ref. [14]. The DMFT provides a solution for the

derived local impurity problem. The iterated perturba-

tion theory (IPT) [12] has been extended to a non-

equilibrium description. This method as a diagrammatic

impurity solver is reasonably fast also for non-equilib-

rium systems, because there exist analogs [9] to the

Feynman rules for evaluating equilibrium diagrams.

Especially at half filling, the IPT proves to be a reliable

solver for the DMFT in equilibrium systems [12].

At the end, one is left with the task of self-consistently

evaluating a matrix equation which is of dimensions 2x2

in Keldysh space and of dimension (2n ? 1) 9 (2n ? 1)

in Floquet space. In this paper n = 10 Floquet bands

have been used in the numerical evaluations, i.e.,

n ranges from -10 to ?10. Practically, this number of

Floquet bands corresponds to the number of emitted or

absorbed lattice quanta �hX: The numerical solution of the

non-equilibrium DMFT approach leads then to the full

non-equilibrium Floquet–Keldysh–Green’s function given

in Eq. (7), i.e., to the full knowledge of the three distinct

components of the local Green’s function

Gretðx;XÞ;Gadvðx;XÞ and as well as GKeldðx;XÞ for all

atomic energies �hx and all lattice vibrations �hX: There-

fore, also to physical quantities such as the local density

of states or the non-equilibrium distribution function of

the ultracold fermionic gas in the modulated optical lat-

tice. In particular, the local density of states Nðx;XÞ is

given by the expression

Nðx;XÞ ¼ � 1

p
ImGretðx;XÞ

¼ � 1

p

Z
d3k

X

m;n;r

ImGret
mn;rðk;x;XÞ

ð8Þ

since all emission and absorption processes have to be

included, there appears a sum over all involved Floquet

bands (
P

mn . . .) in Eq. (8).
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3 Results and discussion

In this section, results of the numerical evaluation of the

non-equilibrium DMFT are presented for a fixed set of on-

site energy and on-site interaction strength and for a range

of modulation strengths T of the optical lattice. The on-site

energy variation is here set to be E/D = 1. Here throughout

this paper, the unit of energy is given by the half bandwidth

D of the equilibrium system. In particular, the system is at

half filling and the on-site interaction is set to be U/D = 4,

i.e., it is a strongly interacting system. The equilibrium

ground state of this system is therefore an insulating state,

i.e., there is no spectral weight at the Fermi energy �hx ¼ 0:

The two bands, i.e., the lower and the upper Hubbard band,

are split by U/2 due to the strong correlations. In other

words, a gap of width U/2 opens up in the spectral weight,

consequently conductivity is suppressed and a Mott insu-

lating state is established. The energy gap occurs sym-

metrically in the presented plots, because in the

calculations the filling of the optical lattice is assumed to

be 0.5, i.e., each lattice site is occupied by one atom. In the

presence of periodic lattice strength variations, i.e., in the

non-equilibrium regime, this situation is altered. With

increasing strength of the lattice modulations and depend-

ing on the modulation frequency X this changes in some

respects, as detailed below.

In Figs. 1, 2, 3, 4, 5, 6 and 7, the local density of states is

displayed for a series of increasing amplitudes of the

periodic optical lattice modulation. Each plot itself features

the atomic energy �hx along the abscissa and the energy

�hX; i.e., frequency, of the lattice modulations along the

ordinate. So, for a specified lattice vibration frequency, one

chooses that specific value at the y-axes and reads out the

density of states as a function of atomic energy �hx along

the x-axes.

For small external modulation frequencies, the original

bands are found to split into a number of Floquet sidebands

which are separated to each other proportional to the

external modulation frequency, therefore, the almost

equally smeared-out appearance for small vibrational fre-

quencies, see, e.g., Fig. 1. For the example of a small

amplitude modulation T/D = 0.25, another interesting

effect is to be observed, starting at about modulation

energies of �hX=D ¼ 0:12: The interaction-based splitting

of the bandstructure of upper and lower Hubbard band in

Fig. 1 is modified in the way that the two Hubbard bands

themselves are again split into two, such that an effective

four-band system is formed. This additional splitting is,

however, not caused by atom-atom interactions but by the

dynamical modulation of the lattice potential. This newly

established state still maintains, at least approximately, the

insulating character of the underlying equilibrium solution,

i.e., no spectral weight and atomic occupation at the Fermi

edge, i.e., at �hx ¼ 0: These four quasi-bands are separated

by regions of low spectral weight, by quasi-gaps which

opened solely due to externally induced lattice vibrations in

this ultracold Fermi gas system. In a modulation range

between �hX=D ¼ 0:4 and �hX=D ¼ 0:6 where the fast

modulations of the lattice only weakly affect the local

density of states of the degenerate atomic gas.

The decreasing effect of the dynamic lattice vibrations

on the density of states with increasing frequencies X is

attributed to the fact that at some point, the atoms in the

optical lattice cannot follow the fast changing lattice

potential anymore. Therefore, the local density of states

(LDOS) is formed which is in its main features similar to

the equilibrium density of states, compare to Fig. 1 and

vibration frequencies of ca. �hX=D� 1: In this regime, only
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Fig. 1 Imaginary part of the retarded component of the full and local

Green’s function. This relates to the density of states (LDOS)

Nðx;XÞ; as given in Eq. (8). The abscissa represents the atomic

energy �hx; whereas the ordinate �hX labels the energy of the lattice

modulation, i.e., its frequency. Here and in the following, the unit of

energy is given by the half bandwidth D of the equilibrium system.

The interaction strength of two atoms with opposite spin at the same

lattice site is U/D = 4, and the modulation hopping amplitude is here

set to be T/D = 0.25. For a detailed discussion, see text
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Fig. 2 The same parameters as in Fig. 1 but with the modulation-

induced hopping increased to a value of T/D = 1.00
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one excited Floquet band of both upper and lower Hubbard

band are still visible, with minor deviations inside the

equilibrium gap, i.e., between ca. �1\�hx=D\þ 1: Each

Hubbard band forms a Floquet sideband of emission of one

vibrational quant �hX to its left and one Floquet sideband of

absorption of one vibrational quant �hX to its right-hand

side.

In Figs. 2, 3, 4 and 5, we present numerical results for

the LDOS, Eq. (8), for numerically ascending modulation-

induced hopping strengths of T/D = 1, 3, 5, 8. The spec-

tral weight for intermediate strengths T/D, Figs. 2 and 3,

the range of small modulation energies �hX� 0:25; displays

the change from modified equilibrium DOS towards a split

up two-band system, split into a quite large number of

Floquet sidebands. The synthetic, generated quasi-four-

band system is still found for approximately �hX=D� 0:65:

For even larger modulation energies in Figs. 2 and 3, the

spectral weight assembles again the equilibrium two

Hubbard bands and to some extent an additional spectral

weight in the gap region between 1� �hx=D� 1: For quite

large hopping modulations of T/D = 5 and T/D = 8 pre-

sented in Figs. 4 and 5, the just described characteristics

are absent and replaced by a Floquet-fan like structure.

This found structure represents the Floquet sidebands of

absorption and emission of vibration quanta of the lattice.

Interesting to note about Figs. 4 and 5 is that the structure

of the LDOS for large �hX displays a reversed structure as

compared to the equilibrium system. Precisely, in the for-

mer gap region 1� �hx=D� 1; there is significant spectral

weight, whereas in the place of the former Hubbard bands,

the spectral weight is suppressed.

In general, this form in the spectral function resembles a

Wannier-Stark ladder, which is also seen in the energy

distribution of fermionic atoms in the lattice. The non-

equilibrium distribution function Fðx;XÞ of the ultracold

and strongly interacting Fermi gas is obtained with the help

of the retarded and the Keldysh component GKeldðx;XÞ of

the full Keldysh–Floquet–Green’s function, see Eq. (6), by

means of the following general relation

Fðx;XÞ ¼ 1

2
1þ 1

2i

P
mn GKeld

mn ðx;XÞP
mn ImGret

mnðx;XÞ

� �
: ð9Þ

The two sums over Floquet indices incorporate all absorption

and emission events, Fðx;XÞ is, therefore, an effective

quantity and also directly accessible by experiments.

A numerical evaluation of this distribution function,

characterizing the atoms inside the periodically modulated

lattice, is depicted in Fig. 6. The distribution function

Fðx;XÞ is depicted for various modulations strengths T as

a function of atomic energy �hx for one specific value of the

modulation frequency �hX=D ¼ 1: Clearly visible are the

absorption and emission features of lattice modulation

quanta, a spectral hole burning effect. The absorption

features for �hx=D\0 display a sharp lower edge, since

there is a specific maximum energy for each absorption

process.
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Fig. 3 The same parameters as in Fig. 1 but with the modulation-

induced hopping increased to a value of T/D = 3.00
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Fig. 4 The same parameters as in Fig. 1 but with the modulation-

induced hopping increased to a value of T/D = 5.00
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Fig. 5 The same parameters as in Fig. 1 but with the modulation-

induced hopping increased to a value of T/D = 8.00
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The different absorption features correspond to the dif-

ferent number of involved lattice quanta. For instance,

atoms that absorb energy at ��hx are lifted in energy to a

state with energy þ�hx by absorbing energy from the lattice

oscillation with 2�hx ¼ n�hX where n characterizes the

number of absorbed lattice quanta. Processes involving

simultaneous absorption of up to four lattice quanta are

found. The process of transferring energy to the lattice by

emitting lattice quanta is analog. In Fig. 6, the at first

glance overproportional dip (peak) in the distribution

function at atomic energies �hx=D� �8 (�hx=D� þ8) is

best understood when bearing in mind that the physical

quantity involved here is the atomic occupation number,

which is the product of distribution and spectral function.

Since this effect in the distribution function occurs in a

region where the spectral function, see for instance Fig. 4,

is weak, the occupation number is only slightly modified by

this process.

Returning now to the discussion of the density of states.

With increasing modulation strength T of the optical lattice

holding the ultracold atomic gas, the distortion of the

equilibrium density of states becomes more and more

severe. By comparing Figs. 2, 3 and 4, one observes that the

equilibrium density of states is almost completely changed.

This is due to the formation of an increasing number of

Floquet sidebands. These absorption and emission bands

may also encounter intersections and fill even the Hubbard

gap. This transferring of spectral weight toward atomic

energies�1\�hx=D\1 leads to the breakdown of the Mott

insulating state and consequently the system self-consis-

tently passes over into a conducting state.

With an even more increased modulation amplitude

T, see, e.g., Fig. 5, the system undergoes a transition into a

state in which for rather large modulation frequencies ca.

�hX=D [ 0:8 the system almost resembles a seven-band

system with the zeroth band right around the Fermi energy

�hx=D ¼ 0; even though the system is severely driven out

of equilibrium. The number and position of the Floquet

sidebands is also highly sensitive to driving frequency and

may change drastically, depending on the specific value of

�hX=D; cf. Fig. 5. Interestingly, this behavior opens a way

to switch the system in a controlled way from an insulating

multi-band system to a conducting multi-band system, by

changing the modulation amplitudes from low to high at a

fixed external modulation frequency.

The density of states at the Fermi energy is always of

special interest, since it is a reliable indicator for the con-

ductivity of the system in question. In Fig. 7, the local

density of states at the Fermi edge is depicted for a variety

of modulation strengths. Different curves belong to dif-

ferent modulation strengths as indicated. These curves

therefore correspond to vertical cuts along �hx=D ¼ 0 in

Figs. 1, 2, 3, 4 and 5 and are presented in their own graph

simply for the reasons of clarification and clearness. Strong

non-monotonic variations of the spectral weight are

observed depending on both, the modulation strength and

frequency. As universal features, there appears a minimum

at ca. �hX=D ¼ 0:5 followed by a maximum at ca. �hX=D ¼
0:65: For small and large modulation frequencies, the
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Fig. 6 Numerically computed non-equilibrium distribution function

Fðx;XÞ of the dynamical AC-Wannier-Stark effect of fermionic

atoms as a function of atomic energy �hx for the modulation frequency

of �hX=D ¼ 1:0. Clearly visible are the absorption and emission

features of lattice modulation quanta, a spectral hole burning effect.

The absorption features for �hx=D\0 display a sharp lower edge,

since there is a specific maximum energy for each absorption process.

The different absorption features correspond to the different number

of involved lattice quanta. Processes involving simultaneous absorp-

tion of up to four lattice quanta are found
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h
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Fig. 7 Displayed is the computed spectral weight ImGretðx;XÞ; c.f.

Eq. (8), along the Fermi edge at �hx=D ¼ 0 as a function of lattice

modulation frequency �hX: Different curves correspond to different

modulation strengths as indicated. The density of states at the Fermi

edge is also an indicator of the conductivity of system. Strong non-

monotonic variations of the spectral weight are observed depending

on both, modulation strength and frequency. As universal features,

there appears a minimum at ca. �hX=D ¼ 0:5 followed by a maximum

at ca. �hX=D ¼ 0:65: Interestingly, for small and large modulation

frequencies, the spectral weight returns to zero, its equilibrium value

R. Frank
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spectral weight returns to zero, which is its equilibrium

value. The corresponding ground state is a Mott insulator.

In general, two-phonon processes which are bridging the

gap at modulation energies of �hX ¼ 1 yield a strong con-

ductivity in this driven system.

4 Summary and conclusion

In conclusion, an ultracold gas of strongly interacting fer-

mionic atoms located in a three-dimensional optical lattice

has been considered. The potential strength of the optical

lattice has been periodically modulated in time. Due to

these external modulations, the gas is driven out of ther-

modynamical equilibrium. A theoretical analysis of the

non-equilibrium state was performed by employing the

Schwinger–Keldysh technique in order to account for far

off equilibrium situation and in combination with a Floquet

analysis, best suited to take advantage of the periodic

nature of the driving. The system has been solved by a

DMFT method, developed to include the non-equilibrium

Floquet–Keldysh formalism and solved by means of the

IPT. The IPT impurity solver has been extended to account

for non-equilibrium system.

The developed technique was applied to calculate the

local density of states of the driven system of an ultracold

Fermi gas in a modulated three-dimensional optical lattice.

The influence of a systematic change in the externally

controlled amplitude of the lattice modulation was studied.

The numerically determined LDOS displays severe chan-

ges depending on both the driving frequencies and the

modulation amplitude. The strongly correlated system can

be driven out of its insulating state into a conducting multi-

band dynamical Wannier-Stark state with quite interesting

effects in the intermediate regime. The observed inversion

as compared to the equilibrium state, i.e., the occupied

states above the lower Hubbard band and consequently the

lowered population below, is open to experimental verifi-

cation. In particular, the part of the gap region

0� �hx=D� 1 for large modulations of the lattice is inter-

esting due to its wide range of possible changes.
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