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ABSTRACT

Controlling atom–photon interactions in engineered environments is central to quantum optics and emerging quantum technologies.
Non-Hermitian (NH) photonic baths, where dissipation fundamentally reshapes spectral and dynamical properties, provide versatile platforms
for such control. Here, we investigate the relaxation dynamics of a single two-level quantum emitter coupled to the edge of a semi-infinite dissi-
pative bosonic lattice with uniform loss. Despite the simplicity of this bath, we uncover rich dynamical phase transitions, i.e., qualitative
changes in spontaneous-emission decay as system parameters are varied. In particular, we establish the existence of an optimal dissipative
environment for accelerated spontaneous emission. The phase transitions are traced to spectral restructuring of the resolvent, in some
cases governed by the coalescence of resonance states on the second Riemann sheet. We identify these coalescences as virtual exceptional
points (EPs) of resonance origin, providing a conceptual bridge with EP physics while highlighting distinctive features of infinite-dimensional
NH systems. More broadly, our results illustrate how the specific nature of dissipation—whether uniform losses, staggered losses, or
dephasing—can profoundly impact emitter relaxation, pointing to dissipation engineering as a versatile tool for quantum technologies.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0299681

I. INTRODUCTION

Controlling atom–photon interactions at the quantum level
is central to quantum optics and a key enabler of emerging
quantum technologies.1–5 Engineered photonic environments
allow one to tailor spontaneous emission, stabilize bound states,
and mediate long-range interactions, thereby providing versatile
resources for quantum networks and light–matter interfaces.
Recent advances in integrated and nanophotonics,4,6 supercon-
ducting circuits,3,7–9 and cold-atom arrays10,11 have significantly
expanded the range of structured and dissipative baths available
for such purposes.

Non-Hermitian (NH) physics12–18 provides a powerful frame-
work to describe these environments, where dissipation and loss
fundamentally reshape spectral and dynamical properties. Recent
works have addressed the dynamics of quantum emitters coupled
to NH baths,19–25 predicting exotic effects, such as unconventional
emission dynamics,20 hidden bound states of skin-effect origin,19,21,22

non-reciprocal interactions between emitters,20,24 algebraic atomic

decay in lattices with staggered dissipation,21,22 and unusual in-gap
chiral or extended photon-emitter dressed states.25

In finite-dimensional NH systems, a hallmark phenomenon is
the appearance of exceptional points (EPs), where pairs of eigenval-
ues and eigenvectors coalesce.26–31 EPs underpin striking dynamical
effects and have been widely explored in both classical and quantum
settings,32–56 with applications ranging from ultrasensitive
sensing,33–36,40–42 to topological and chiral mode transfer,43–47 struc-
tured light generation,48 entanglement phenomena,55 and photon
blockade.53 Such studies have established EPs as a cornerstone of
NH physics. Moreover, effective NH descriptions of EPs can be
microscopically grounded by embedding them into open quantum
system models,57–66 clarifying their physical origin and connection to
system–bath dynamics. Importantly, however, in most of these
works,62,63,65,66 the bath itself is taken to be Hermitian, with
non-Hermiticity introduced only through localized loss or gain
terms acting on the system. By contrast, as in Refs. 19–23, here, we
focus on the complementary situation where the bath itself is
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intrinsically non-Hermitian (dissipative), a setting that leads to quali-
tatively different spectral and dynamical features. Beyond conven-
tional EPs arising in effective NH descriptions of the underlying
dissipative dynamics, several extensions have been introduced,
including Liouvillian EPs in Markovian systems,67–72 virtual EPs in
parametrically driven systems,73,74 and non-Markovian EPs in struc-
tured reservoirs,75 thereby broadening the scope of NH singularities.

In infinite-dimensional NH systems, the spectral structure is
richer: in addition to discrete bound states and the continuous
spectrum, resonance states can emerge as poles of the resolvent on
the second Riemann sheet.13,62,64–66 In the present dissipative bath,
the atom–photon bound states are spatially localized but decay
exponentially in time owing to the uniform losses of the photonic
lattice. While resonance states do not belong to the Hilbert space
and are obtained via Siegert boundary conditions,57,61 they are
well known to shape temporal relaxation dynamics57,76–82 and scat-
tering features,13,57–59 such as Breit–Wigner or Fano resonances, in
infinite-dimensional systems.

In this work, we show that the coalescence of atom–photon
bound states and resonance states, through physical or virtual EPs,
can induce dynamical phase transitions83,84 in the spontaneous-
emission process of a quantum emitter coupled to a dissipative
bosonic bath. A key consequence of these transitions is the
emergence of optimal dissipation strength that maximizes the
spontaneous-emission rate of the emitter. Too little or too much
dissipation slows down relaxation, while an intermediate value
yields the fastest decay. Some of these transitions are associated
with resonance coalescence—conceptually related to virtual EPs
of resonance origin62—and are, therefore, distinct from discrete
EP degeneracies of NH Hamiltonians, Liouvillian EPs,67,68 or
spectral singularities in the continuous spectrum of infinite-
dimensional NH systems.85–88 We illustrate these ideas in a
minimal dissipative model of relevance to waveguide quantum
electrodynamics (QED): a quantum emitter coupled to the edge
of a semi-infinite bosonic lattice with uniform dissipation.
We uncover three distinct coupling regimes—weak, intermediate,
and strong—where different types of phase transitions arise from
the restructuring of poles of the resolvent on the first and second
Riemann sheets. Unlike standard EP-related effects, some transi-
tions originate from spectral restructuring due to resonance coales-
cence, i.e., the emergence of resonance-driven virtual EPs. Our
results establish dissipative baths as simple yet powerful platforms
for exploring NH phase transitions and optimal relaxation dynam-
ics. Uniformly lossy lattices, being both analytically tractable and
experimentally accessible in nanophotonic waveguides, supercon-
ducting circuits, and cold-atom setups, provide ideal testbeds.
Beyond their fundamental significance, these findings suggest strat-
egies for harnessing dissipation to accelerate relaxation and
enhance atom–photon coupling, with extensions to multi-emitter
and higher-dimensional baths expected to further connect these
ideas with cutting-edge experimental platforms.

II. PHOTON EMISSION IN A DISSIPATIVE BOSONIC
LATTICE: MODEL AND BASIC EQUATIONS

We consider a standard model in waveguide QED, where a
quantum emitter, modeled as a two-level atom, is coupled to a

nanophotonic lattice of resonators,20–22,89–95 as illustrated in Fig. 1.
Photon modes in the lattice resonators experience local loss, ren-
dering the bosonic bath non-Hermitian.20–22,96

Let jei and jgi denote the excited and ground states of the
atom, with transition frequency ω0, placed inside the edge resonator
n ¼ 1 of the semi-infinite array, and let ωc ≃ ω0 be the resonance
frequency of the photon modes. Under the Markovian and rotating-
wave approximations, the time evolution of the atom–photon density
operator ρ(t) is governed by the Lindblad master equation (ħ ¼ 1),21

dρ
dt

¼ �i[H, ρ]þ
X1
n¼1

γn 2anρa
y
n � aynanρ� ρaynan

� �
; Lρ, (1)

where

H ¼ (ω0 � ωc)jeihej �
X1
n¼1

J aynþ1an þH:c:
� �n o

þ g0 ay1jgihej þH:c:
� �

(2)

is the full atom–photon Hamiltonian in the rotating-wave approxi-
mation. Here, γn is the photon loss rate in the nth resonator, J is the
hopping rate between adjacent resonators, ayn (an) is the photon crea-
tion (annihilation) operator in the nth resonator, and g0 is the atom–
photon coupling strength.

Previous studies considered staggered losses corresponding to
passive parity-time symmetry of the NH bath,21 leading to robust
algebraic atomic decay. Here, we focus on the simpler case of
uniform dissipation, γn ¼ γ. Despite the simplicity of the bath, the
model exhibits dynamical phase transitions, some of which are
driven by the coalescence of resonance states, identified as virtual
exceptional points.

To describe spontaneous emission, we assume that at t ¼ 0, the
atom is in the excited state and the photon field is in the vacuum
state, i.e., ρ0 ¼ ρ(t ¼ 0) ¼ jψ0ihψ0j, with jψ0i ¼ jei � j0i, where
j0i is the photon vacuum state. Since the system has no gain, the
dynamics is confined to the N � 1 excitation sector of Hilbert space,
and quantum-jump terms in the Lindblad master equation (1) do
not affect the emitter’s relaxation.21 Accordingly,

ρ(t) ¼ e�iHNHtρ0e
iHy

NHt þ pt jgihgj � j0ih0j
¼ jψ(t)ihψ(t)j þ pt jgihgj � j0ih0j, (3)

FIG. 1. Schematic of a two-level quantum emitter coupled to a dissipative
bosonic bath consisting of a semi-infinite array of coupled optical cavities. The
emitter is placed inside the edge resonator (n ¼ 1). Here, J denotes the photon
hopping rate between adjacent resonators, g0 the atom–photon coupling
strength, and γn the photon loss rates in each resonator.
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where the effective NH Hamiltonian is

HNH ¼ H � iγ
X1
n¼1

aynan

¼ Δω0jeihej �
X1
n¼1

J aynþ1an þH:c:
� �n o

þ g0 ay1jgihej þH:c:
� �

� iγ
X1
n¼1

aynan, (4)

with Δω0 ¼ ω0 � ωc, and

jψ(t)i ¼ e�iHNHt jψ0i, pt ¼ 1� Tr e�iHNHtρ0e
iHy

NHt
� �

: (5)

This means that, as quantum jumps do not play any role in the
single excitation sector, the dynamics is fully captured by the
quantum state jψ(t)i that evolves according to the effective NH
Hamiltonian HNH .

21,97 Writing

jψ(t)i ¼ ca(t)jei � j0i þ
X1
n¼1

bn(t)jgi � aynj0i, (6)

the Schrödinger equation i@t jψ(t)i ¼ HNH jψ(t)i yields

i
dca
dt

¼ Δω0ca þ g0b1,

i
db1
dt

¼ g0ca � Jb2 � iγb1,

i
dbn
dt

¼ �J(bnþ1 þ bn�1)� iγbn, n � 2:

(7)

These equations can be solved exactly using standard spectral
methods.62,87,98,99 Introducing

c(k, t) ¼
ffiffiffi
2
π

r X1
n¼1

bn(t)sin(nk), 0 � k , π, (8)

the dynamics reduces to a non-Hermitian Friedrichs–Lee (Fano–
Anderson) model,87,100

i
dca
dt

¼ Δω0ca þ
ðπ
0
dkg(k)c(k, t), (9)

i
dc(k, t)

dt
¼ ω(k)c(k, t)þ g�(k)ca, (10)

with

ω(k) ¼ �2J cos k� iγ, g(k) ¼
ffiffiffi
2
π

r
g0 sin k, (11)

where ω(k) is the NH photonic bath dispersion and g(k) is the
atom–photon spectral coupling. The survival probability is

Ps(t) ¼ Tr(ρ(t)ρ0) ¼ jca(t)j2: (12)

Due to the non-Hermitian, infinite-dimensional nature of HNH , in
addition to conventional (or physical) EPs—coalescence of eigene-
nergies and eigenstates in the point spectrum—virtual EPs can
emerge from the coalescence of resonant states. A detailed discussion
of the difference between ordinary (or physical) EPs and virtual EPs
is provided in Appendix A.

III. RELAXATION DYNAMICS, VIRTUAL EXCEPTIONAL
POINTS, AND DYNAMICAL PHASE TRANSITIONS

A. Relaxation dynamics: General

The exact solution for ca(t), governed by Eqs. (9)–(10), can be
obtained via Laplace or resolvent methods,21,80,81,87,98,99

ca(t) ¼ 1
2πi

ð
B
ds ĉa(s)e

st , ĉa(s) ¼ 1
sþ iΔω0 þ iΣ(s)

, (13)

with the self-energy

Σ(s) ¼
ðπ
0
dk

jg(k)j2
is� ω(k)

¼ i
g20
2J2

sþ γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ (sþ γ)2

q� �
(14)

and Bromwich path B ¼ (�i1þ 0þ, i1þ 0þ). The Laplace trans-
form ĉa(s) is analytic in the entire complex s plane, except for a
branch cut I along the segment s [ (�2iJ � γ, 2iJ � γ) and possi-
ble poles on the semi-half complex plane Re(s) � �γ. The branch
cut corresponds to the absolutely continuous spectrum of HNH ,
whereas the poles of ĉa(s) correspond to the point spectrum (atom–
photon bound states). The integration Bromwich path B can be
deformed as illustrated in Fig. 2. Deforming the contour requires to
cross the branch cut I, from the right to the left side. Therefore,
analytic continuation ĉ(II)a (s) of ĉa(s) on the second Riemann sheet,

FIG. 2. Contour paths in the complex s-plane for Eq. (13). The solid segment I
along Re(s) ¼ �γ is the branch cut of the self-energy Σ(s). The Bromwich path
B can be deformed into the Hankel paths h1 and h2, and the pole contributions
sk ( first Riemann sheet, bound states) and Sk (second Riemann sheet, resonant
states). The shaded region indicates the domain of analytic continuation for
ĉa(s) on the second Riemann sheet.
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obtained from Eq. (13) by replacing the self-energy with its analytic
continuation

Σ(II)(s) ¼ Σ(s)þ i
g20
J2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(sþ γ)2 þ 4J2

q
, (15)

should be considered in the shaded area of Fig. 2. Hence, ca(t) has
contributions from (i) poles sk of ĉa(s) on the first Riemann sheet
(bound states), (ii) poles Sk of ĉ(II)a (s) on the second Riemann sheet
(resonant states), and (iii) Hankel-path integrals H1(t), H2(t) along
the contours h1, h2 in the first and second Riemann sheets, i.e.,

ca(t) ¼
X
k

rke
skt þ

X
k

Rke
Skt þ H1(t)þH2(t), (16)

with

H1(t) ¼ C1(t)e
�γtþ2iJt , H2(t) ¼ C2(t)e

�γt�2iJt , (17)

C1(t) ¼
ð1
0
dx f (II)þ (x)� fþ(x)

	 

e�xt , (18)

C2(t) ¼
ð1
0
dx f�(x)� f (II)� (x)

	 

e�xt : (19)

In the above equations, we have set f+(x) ¼ ĉa(s ¼ �γ � x+ 2iJ)
and f (II)+ (x) ¼ ĉ(II)a (s ¼ �γ � x+ 2iJ), and rk and Rk are the resi-
dues of ĉa(s) and ĉ(II)a (s) at the poles sk and Sk on the first and
second Riemann sheets, given by

rk ¼ sk(σ � 1)þ γσ

(2σ � 1)sk þ γσ
,

Rk ¼ Sk(σ � 1)þ γσ

(2σ � 1)Sk þ γσ
,

and σ ; g20=(2J
2) is the normalized atom–photon coupling

strength. The Hankel-path contributions produce non-exponential
decay features at short and long times, with C1,2(t) � t�3=2 at long
times.99 Poles of ĉa(s) and ĉ(II)a (s) govern the relaxation dynamics at
intermediate and long time scales. According to Eqs. (13) and (14),
the poles on the first or second Riemann sheets satisfy the qua-
dratic equation

(1� 2σ)s2 � 2[γσ þ iΔω0(σ � 1)]s

� 4σ2J2 � Δω2
0 � 2iγσΔω0 ¼ 0: (20)

Only poles with Re(s) � 0 contribute to the dynamics. Since Eq. (20)
is quadratic, at most two poles—located either on the first or on the
second Riemann sheet—can contribute to the decay dynamics of
ca(t). A pole sk on the first Riemann sheet corresponds to an
atom–photon bound state, in which case the condition Re(sk) � �γ
is satisfied. A pole on the second Riemann sheet instead corresponds
to either a resonant or an anti-resonant state (see Appendix B for
technical details). For a resonant state, one finds Re(Sk) , �γ; i.e.,

the pole lies to the left of the branch cut. By contrast, anti-resonant
states are always associated with a pole Sk such that Re(Sk) . 0; con-
sequently, they do not contribute to the decay dynamics of ca(t).

As the parameters g0=J , Δω0=J , and γ=J are varied, the poles
move in the complex plane, leading to different relaxation behav-
iors. Coalescence of poles on the first Riemann sheet corresponds
to ordinary EPs, while coalescence on the second Riemann sheet
corresponds to virtual EPs (see Appendix A). From Eq. (20), a nec-
essary condition for pole coalescence s p1 ¼ s p2 is Δω0 ¼ 0, i.e.,
atom and photon fields in resonance. In this resonant case, the two
poles are

s p1,2 ¼
γ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4 J2 � g20ð Þp

2 J2=g20 � 1ð Þ : (21)

The corresponding form of bound or resonant eigenstates can be
directly obtained by solving the eigenvalue equation HNHjψi ¼ Ejψi
on the semi-infinite lattice, as shown in Appendix B. In particular,
the coalescence of the two poles, s p1 ¼ s p2 , always corresponds to
the coalescence of the corresponding eigenstates, i.e., to either a
virtual (for resonant states) or a physical (for bound states) EP.

The general relaxation dynamics is then fully determined by
the positions of these poles; the residues rk, Rk; and the Hankel
contributions H1(t), H2(t), giving a rich interplay of exponential,
non-exponential, and long-time algebraic decay behavior in the
spontaneous-emission process of the quantum emitter, as discussed
in Subsection III B.

B. Dissipation-induced exceptional points
and dynamical phase transitions

The position of the poles s p1 and s p2 in the complex energy
plane, and thus the appearance of EPs, critically depends on the
normalized atom–photon coupling constant g0=J . Specifically, three
distinct cases should be considered: the weak-coupling regime
(g0=J , 1), the moderate-coupling regime (1 , g0=J ,

ffiffiffi
2

p
), and

the strong-coupling regime (g0=J .
ffiffiffi
2

p
).

1. Weak-coupling regime

The weak-coupling regime corresponds to the condition
g0=J , 1. In this regime, the two poles s p1 and s p2 are located on
the real s axis and never cross as the bath dissipation rate γ is
varied; i.e., there are not EPs of any kind. A typical behavior of the
real and imaginary parts of the two poles s p1 and s p2 vs normalized
loss rate γ=J is shown in Figs. 3(a) and 3(b). For γ , γc1 , with

γc1 ¼
g20
J
, (22)

both poles are on the second Riemann sheet and correspond to a
resonant state (the pole s p1 with a negative real part, smaller than
�γ) and to an anti-resonant state (the pole s p2 with a positive real
part). The latter does not play any role in the relaxation dynamics
and can be, thus, disregarded. In this case, the decay law (16) is
specialized as [Fig. 4(a)]
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ca(t) ¼ R1exp(S1t)þ H1(t)þH2(t), (23)

where S1 ¼ s p1 . An example of the relaxation dynamics is shown in
Fig. 4(b). After an initial short time (Zeno region), in the interme-
diate time region, the dominant contribution to the dynamics is
given by the pole contribution on the second Riemann sheet, with
a decay rate equal to jRe(s p1 )j . γ. However, at longer times, the
dominant contribution comes from the Hankel paths H1,2(t) [Eqs.
(17)–(19)], whose interference yields an oscillatory decay behavior
at the characteristic frequency 4J enveloped by the damping func-
tion �t�3=2exp(� γt), as clearly shown in Fig. 4(b). Therefore, in
this regime, the long-time decay behavior deviates from an expo-
nential and displays damped oscillations due to interference effects.

For γ . γc1 , the pole s p1 crosses the branch cut and is now
located on the first Riemann sheet [Fig. 5(b)]. Thus, one has

ca(t) ¼ r1exp(s1t)þ H1(t)þH2(t), (24)

where s1 ¼ s p1 . In the temporal domain, the branch crossing of
pole s1 corresponds to a phase transition in the relaxation dynam-
ics;83,84 i.e., the asymptotic time behavior of ca(t) toward zero is not
anymore dominated by the Hankel-path contributions H1,2(t), as in
Fig. 4(b); rather, it is purely exponential and dominated by the pole
contribution corresponding to the atom–photon bound state, as
shown in Fig. 5(b).

Finally, an inspection of Fig. 3(a) indicates that the spontaneous-
emission process of the quantum emitter in the asymptotic long-
time regime is fastest at the critical loss rate γ ¼ γc1 ¼ g20=J , with
the largest decay rate given by js p1 j ¼ γc1 . In fact, for γ , γc1 , the
asymptotic relaxation dynamics is dominated by the Hankel path
contributions, with a decay ca(t) � t�3=2exp(� γt) that gets faster
as γ is increased. However, as γ is increased above the critical
value γc1 , the dominant decay rate is given by the atom–photon
bound state contribution, which decreases as γ is increased and
vanishes as γ=J ! 1. Physically, in this limit, the dissipation in
the bath is so large that the quantum emitter becomes decoupled
to it as a result of effective quantum Zeno dynamics.101

2. Moderate-coupling regime

The moderate-coupling regime corresponds to the condition
1 , g0=J ,

ffiffiffi
2

p
. A typical behavior of the real and imaginary parts

of the two poles s p1 and s p2 vs normalized loss rate γ=J is shown in
Figs. 6(a) and 6(b). As it can be seen, for γ , γc1 ¼ g20=J , the two
poles s p1 and s p2 lie on the second Riemann sheet and correspond
to resonant states. For g0 not too close to J , the two poles are
embedded in the shaded region of Fig. 2, between the two Hankel
paths h1 and h2, and thus, the decay law (16) takes the form
[Figs. 7(a) and 7(c)]

ca(t) ¼ R1exp(S1t)þ R2exp(S2t)þH1(t)þ H2(t), (25)

where S1 ¼ s p1 and S2 ¼ s p2 . The Hankel contributions are respon-
sible for deviations from exponential decay at short and long time

FIG. 4. (a) Integration contour in a complex s plane in the weak-coupling
regime and for γ , γc1 . The contribution to the decay law ca(t) comes from the
two Hankel paths h1,2 and from the pole S1 ¼ s p1 on the second Riemann
sheet (resonant state). (b) Numerically computed behavior of the survival proba-
bility Ps(t) ¼ jca(t)j2 vs normalized time Jt for parameter values g0=J ¼ 0:6
and γ=J ¼ 0:05.

FIG. 3. (a) Behavior of the real and imaginary parts of the two poles s p1 and
s p2 vs loss rate γ in the weak-coupling regime (g0=J ¼ 0:8). The dashed
curve, corresponding to Re(s) ¼ �γ, separates the two Riemann sheets. Pole
s p2 , with a positive real part, is located on the second Riemann sheet and does
not impact on the relaxation dynamics. Pole s p1 is located on the second
Riemann sheet for γ , γc1 ; g20=J ¼ 0:64J, corresponding to a resonant
state, whereas it is located on the first Riemann sheet for γ . γc1 , correspond-
ing to an atom–photon bound state. (b) Loci of the two poles s p1,2 in a complex
s plane as the loss rate γ is varied from γ ¼ 0 to γ ¼ 3J.

FIG. 5. (a) Integration contour in a complex s plane in the weak-coupling
regime and for γ . γc1 . (b) Numerically computed behavior of the
survival probability Ps(t) ¼ jca(t)j2 vs normalized time Jt for parameter values
g0=J ¼ 0:6 and γ=J ¼ 0:5. Note that the pole s p1 has now crossed the
branch cut and is located on the first Riemann sheet. The contribution to
the decay law ca(t) comes from the two Hankel paths h1,2 and from the pole
s1 ¼ s p1 (bound state). Note the different long-time relaxation behavior of the
survival probability in (b) as compared to Fig. 4(b).
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scales, and they dominate the asymptotic (long-time) relaxation
dynamics since jRe(S1,2)j . γ. Therefore, for γ , γc1 , the long-time
relaxation dynamics is the same as in the weak-coupling regime and
displays a non-exponential oscillatory decay [Figs. 7(b) and 7(d)].
For γ . γc1 , one of the two poles, s p1 , crosses the branch cut and
moves onto the first Riemann sheet, corresponding to the emergence

of an atom–photon bound state [Fig. 8(a)]. The decay law (16) takes
then the form

ca(t) ¼ r1exp(s1t)þ R1exp(S1t)þH1(t)þH2(t), (26)

where s1 ¼ s p1 and S1 ¼ s p2 . In this case, the asymptotic long-time
decay of ca(t) is exponential and dominated by the pole s p1 [Fig. 8(b)],
with the fastest decay attained at the critical value γ ¼ γc1 .

An intriguing behavior, which is not found in the weak-
coupling regime, is the coalescence of the two poles s p1 and s p2 on
the second Riemann sheet, corresponding to a virtual EP, at the
critical value (Fig. 6),

γc2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g20 � J2

q
: (27)

We emphasize that, at such a critical value of the dissipation,
neither the non-Hermitian Hamiltonian HNH nor the Liouvillian L
exhibits any exceptional point (EP) in their spectra. This is because
the pole coalescence responsible for the transition occurs on the
second Riemann sheet and, therefore, lies outside the spectrum of
HNH (see Appendix A). For this reason, we refer to it as a virtual
exceptional point. Nevertheless, this virtual EP induces a qualitative
change in the transient relaxation dynamics as γ is tuned across
γc2 , as illustrated in Figs. 7(b) and 7(d). For γ , γc2 , the two poles
on the second Riemann sheet share the same real part (decay rate)
but have opposite imaginary parts [Fig. 7(a)]. Their interference
produces an intermediate damped oscillatory behavior of ca(t),
with damping rate jRe(s p1 )j ¼ jRe(s p2 )j . γ and oscillation fre-
quency Ω ¼ 2jIm(s p1 )j. At longer times, this regime is supplanted
by damped oscillations with a slower decay and a different period,
originating from the contribution of the Hankel paths. The cross-
over between these two behaviors—marked by an abrupt change in
both decay rate and oscillation period—occurs around t ≃ 7=J , as
shown in Fig. 7(b). Moreover, as the virtual EP is approached, the
oscillation frequency Ω in the initial transient regime gradually
decreases and eventually vanishes. Above the virtual EP, i.e., for
γc2 , γ , γc1 , the two poles are real, the decay behavior in the

FIG. 6. (a) Behavior of the real and imaginary parts of the two poles s p1 and
s p2 vs loss rate γ in the moderate-coupling regime (g0=J ¼ 1:2). The dashed
curve, corresponding to Re(s) ¼ �γ, separates the two Riemann sheets. Both
poles contribute to the relaxation dynamics. For γ , γc1 ¼ g20=J, the two poles
lie on the second Riemann sheet and correspond to two resonances. At
γ ¼ γc2 , with γc2 given by Eq. (27), the two poles coalesce, corresponding to a
virtual EP. (b) Loci of the two poles in a complex s plane as the loss rate γ is
varied from γ ¼ 0 to γ ¼ 2J.

FIG. 7. (a) and (c) Integration contour paths in a complex s plane in the
moderate-coupling regime for (a) γ , γc2 and (c) γc2 , γ , γc1 . The contri-
bution to the decay law ca(t) comes from the two Hankel paths h1,2 and from
the poles S1 ¼ s p1 and S2 ¼ s p2 on the second Riemann sheet (resonances).
(b) and (d) Numerically computed behavior of the survival probability
Ps(t) ¼ jca(t)j2 vs normalized time Jt for g0=J ¼ 1:2. In (b), γ=J ¼ 1, 1, corre-
sponding to γ , γc2 ; in (d), γ=J ¼ 1:35, corresponding to γc2 , γ , γc1 .

FIG. 8. (a) Integration contour in a complex s plane in the moderate-coupling
regime and for γ . γc1 . The contribution to the decay law ca(t) comes from the
two Hankel paths h1,2, from the pole S1 ¼ s p2 on the second Riemann sheet (res-
onance), and from the pole s1 ¼ s p1 on the first Riemann sheet (bound state).
(b) Numerically computed behavior of the survival probability Ps(t) ¼ jca(t)j2 vs
normalized time Jt for parameter values g0=J ¼ 1:2 and γ=J ¼ 2.
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intermediate scale does not show oscillations anymore, and the
relaxation dynamics is reshaped as illustrated in Fig. 7(d).

3. Strong-coupling regime

The strong-coupling regime corresponds to the condition
g0=J .

ffiffiffi
2

p
. A typical behavior of the real and imaginary parts of

the two poles s p1 and s p2 vs normalized loss rate γ=J is shown in
Figs. 9(a) and 9(b). As it can be seen, for γ , γc1 ¼ g20=J , the two
poles s p1 and s p2 lie on the first Riemann sheet and correspond to
two atom–photon bound states. Therefore, the decay law (16) takes
the form [Figs. 10(a) and 10(c)]

ca(t) ¼ r1exp(s1t)þ r2exp(s2t)þ H1(t)þH2(t), (28)

where s1 ¼ s p1 and s2 ¼ s p2 . Interestingly, a coalescence of the two
atom–photon bound states occurs at γ ¼ γc2 , where γc2 is defined
by Eq. (27). This corresponds to an EP of the NH Hamiltonian
HNH . The Hankel-path contributions H1,2(t) are responsible for
deviations from exponential decay at short time scale (Zeno
regime). However, contrary to the weak- and moderate-coupling
regimes, they do not dominate the asymptotic (long-time) relaxation
dynamics, which is, in fact, established by the contributions of the
two atom–photon bound states. For γ , γc2 , the two poles are
complex conjugate, with the same decay rate and opposite imaginary
parts, resulting in asymptotic damped oscillatory relaxation at the fre-
quency Ω ¼ 2jIm(s p1 )j and damping rate jRe(s p1 )j , γ [Fig. 10(b)].
On the other hand, for γc2 , γ , γc1 , the relaxation dynamics is
purely exponential and dominated by the pole s1 [Fig. 10(d)].
Interestingly, an inspection of Fig. 9 indicates that the fastest relaxa-
tion of the quantum emitter occurs at the loss rate γ ¼ γc2 , i.e., at the
EP. This is a distinctive feature than the moderate-coupling regime,
where the fastest relaxation of the emitter occurs at γ ¼ γc1 .

Finally, for γ . γc1 , one of the two poles, s p1 , remains local-
ized on the first Riemann sheet and corresponds to an atom–
photon bound state, whereas the other pole, s p2 , crosses the branch

FIG. 9. (a) Behavior of the real and imaginary parts of the two poles s p1 and
s p2 vs loss rate γ in the strong-coupling regime (g0=J ¼ 2). The dashed curve,
corresponding to Re(s) ¼ �γ, separates the two Riemann sheets. Both poles
contribute to the relaxation dynamics. For γ , γc1 ¼ g20=J, the two poles lie on
the first Riemann sheet and correspond to two atom–photon bound states. At
γ ¼ γc2 , with γc2 given by Eq. (27), the two poles coalesce, corresponding to
an EP of the NH Hamiltonian. (b) Loci of the two poles in a complex s plane as
the loss rate γ is varied from γ ¼ 0 to γ ¼ 5J.

FIG. 10. (a) and (c) Integration contour paths in a complex s plane in the
strong-coupling regime for (a) γ , γc2 and (c) γc2 , γ , γc1 . The contribution
to the decay law ca(t) comes from the two Hankel paths h1,2 and from the two
poles s1 ¼ s p1 and s2 ¼ s p2 on the first Riemann sheet. The asymptotic long-
time relaxation dynamics is dominated by the two poles. An EP, corresponding
to the coalescence of the two poles on the first Riemann sheet (atom–photon
bound states), occurs at γ ¼ γc2 . (b) and (d) Numerically computed behavior of
the survival probability Ps(t) ¼ jca(t)j2 vs normalized time Jt for g0=J ¼ 2. In
(b), γ=J ¼ 2, corresponding to γ , γc2 ; in (d), γ=J ¼ 3:7, corresponding to
γc2 , γ , γc1 . Note the different long-time relaxation dynamics below and
above the EP.

FIG. 11. (a) Integration contour in a complex s plane in the strong-coupling
regime and for γ . γc1 . The contribution to the decay law ca(t) comes from the
two Hankel paths h1,2, from the pole S1 ¼ s p2 on the second Riemann sheet
(resonance), and from the pole s1 ¼ s p1 on the first Riemann sheet (bound
state). The intermediate and long-time relaxation dynamics are dominated by
the pole s1 contribution. (b) Numerically computed behavior of the survival prob-
ability Ps(t) ¼ jca(t)j2 vs normalized time Jt for parameter values g0=J ¼ 2
and γ=J ¼ 4:5.
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cut and is located on the second Riemann sheet (resonance); see
Fig. 11(a). The decay law (16) then takes the form

ca(t) ¼ r1exp(s1t)þ R1exp(S1t)þ H1(t)þH2(t), (29)

where s1 ¼ s p1 and S1 ¼ s p2 . The intermediate and long-time relax-
ation dynamics are exponential and determined by the s1 pole con-
tribution, as shown in Fig. 11(b).

The above analysis indicates that dynamical behavior of the
system arises from the combined contributions of bound states, res-
onant states, and the Hankel-path integrals (continuum). From an
experimental perspective, the distinct dynamical contributions
could, in principle, be resolved through time-resolved measure-
ments of the emitter survival probability. Bound states manifest as
an asymptotic exponential decay that dominates at long evolution
times, reflecting the discrete poles of the resolvent on the physical
Riemann sheet. In contrast, resonant states give rise to transient,
exponentially damped oscillations at intermediate times, whose
decay rates are governed by the imaginary parts of the resonance
poles located on the second Riemann sheet. The remaining contri-
bution, originating from the Hankel-path integrals along the
branch cut, dominates the early-time dynamics and produces non-
exponential, algebraic decay tails. These regimes could be probed
experimentally in ultrafast waveguide-QED or photonic-lattice plat-
forms capable of tracking emitter dynamics across both Zeno and
asymptotic timescales.

IV. CONCLUSION AND DISCUSSION

In this work, we investigated the relaxation dynamics of a
quantum emitter coupled to a semi-infinite uniformly lossy lattice,
a minimal yet physically relevant model in waveguide QED. While
non-Hermitian baths have been considered in previous studies, our
main novelty is to unveil the coexistence of ordinary and virtual
exceptional points (EPs) in such a dissipative environment and to
demonstrate that these distinct singularities can drive dynamical
phase transitions in the spontaneous-emission decay of the emitter.
Despite the apparent simplicity of the model, the interplay between
ordinary EPs (discrete eigenvalue/eigenvector coalescences of effec-
tive non-Hermitian descriptions) and virtual EPs (coalescence of
resonance poles on the second Riemann sheet) produces a rich
dynamical landscape as the bath dissipation is varied.

A central result is the identification of an intermediate regime
of optimal dissipation, where the emitter relaxes faster than in
either the weak- or strong-loss limits. This shows that dissipation
can be harnessed as a controllable resource to accelerate relaxation
and enhance light–matter coupling. The microscopic origin of
these effects is spectral: phase transitions in the decay dynamics are
traced to restructuring of the resolvent poles on the first and
second Riemann sheets and, in particular, to the coalescence of res-
onant states on the second sheet. These resonance coalescences
manifest in transient relaxation and are naturally interpreted as
virtual EPs, highlighting both their conceptual link to conventional
EP physics and their distinctive character in infinite-dimensional
NH systems. More broadly, our results underscore that the nature
of the dissipative bath—not merely the presence of loss—crucially
determines emitter dynamics. In the uniformly lossy lattice studied

here, the dynamics are governed by the spectral properties of the
effective non-Hermitian Hamiltonian, with resonance and/or
bound state coalescence playing the dominant role and quantum-
jump processes remaining irrelevant. By contrast, when losses are
applied only to alternating lattice sites, the relaxation can display
critical (algebraic) decay,21,22 a form of temporal criticality that par-
allels the power-law spatial decay of correlations in conventional
critical phases. An equally distinct scenario arises in baths subject
to local dephasing rather than particle loss. In this case, particle
number is conserved and quantum jumps play a central role in the
relaxation dynamics, which cannot be fully captured by an effective
non-Hermitian description; correspondingly, the decay follows a
critical algebraic law.102 These examples illustrate how different
types of dissipation—uniform vs staggered, loss vs dephasing—can
profoundly alter both the qualitative and quantitative features of
spontaneous emission, determining whether relaxation is exponen-
tial or algebraic and whether its behavior is governed by spectral
pole coalescences or stochastic quantum jumps.

Uniformly lossy lattices are, therefore, both analytically tracta-
ble and experimentally accessible testbeds for exploring the coexis-
tence and interplay of ordinary and virtual EPs and their impact on
dynamical phase transitions in waveguide QED. Natural extensions
include multi-emitter configurations, higher-dimensional baths,
and explicitly non-Markovian environments; each avenue may
reveal new mechanisms by which different dissipation types alter
EP formation, spectral restructuring, and relaxation. In multi-
emitter setups, both bound and resonant states can mediate interac-
tions, with resonances giving rise to transient, time-dependent cou-
plings that decay over the resonance lifetime. Such effects may lead
to temporally modulated, non-Markovian dynamics and constitute
an intriguing direction for future studies.

More broadly, these findings point toward dissipation engi-
neering as a versatile tool for quantum technologies: by tailoring
the type and spatial structure of losses or dephasing, one can design
environments that either protect quantum coherence or accelerate
relaxation as required by the application.
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APPENDIX A: PHYSICAL AND VIRTUAL
EXCEPTIONAL POINTS

In this Appendix, we clarify the distinction between ordinary
(or physical) EPs and virtual EPs. Let us consider an effective
non-Hermitian Hamiltonian HNH , describing the system dynamics,
which depends on a set of control parameters λ. The spectrum of
HNH is entirely determined by the singularities of the resolvent,

G(z) ¼ 1
z �HNH

, (A1)

in the complex energy plane. The nature of the singularities of the
resolvent depends crucially on the dimensionality of the system,
i.e., whether HNH acts on a finite- or infinite-dimensional Hilbert
space.

In the finite-dimensional case, HNH is represented by an
N � N matrix, and the singularities of G(z) are given by its
N poles z1(λ), z2(λ), . . . , zN (λ), which coincide with the complex
eigenvalues of the matrix HNH . As the control parameters λ are
varied, an ordinary (or physical) EP occurs at a critical value
λ ¼ λc when two (or more) eigenvalues coalesce, along with their
corresponding eigenvectors. At λ ¼ λc, the matrix HNH becomes
defective and cannot be diagonalized.

In infinite-dimensional NH systems, the structure of the resol-
vent is richer. In general, G(z) can display two distinct types of sin-
gularities (we do not consider here a third type, spectral singularities,
which can arise in the continuous spectrum of HNH and have been
discussed in some previous works85–88). First, if the point spectrum
of HNH is not empty and contains a set of discrete complex energies
z1(λ), z2(λ), . . ., then G(z) exhibits poles at z ¼ zj(λ), whose corre-
sponding eigenvectors are normalizable bound states. As in the
finite-dimensional case, an ordinary EP can arise when two (or
more) of these poles coalesce at a critical parameter value λ ¼ λc,
along with their associated bound eigenstates. Second, in infinite-
dimensional systems, the resolvent can also develop branch cuts
along curves I in the complex energy plane, across which G(z) is dis-
continuous. The complex energies on these branch cuts correspond
to the absolutely continuous spectrum of HNH , with associated non-
normalizable scattering eigenstates. For example, in the waveguide
QED model discussed in the main text, the resolvent element

Ge,e(z) ¼ hejG(z)jei (A2)

is related to the Laplace transform ĉa(s) of the excited-state ampli-
tude ca(t) [Eq. (13)] via

Ge,e(z) ¼ �îca(s ¼ �iz): (A3)

Explicitly,

Ge,e(z) ¼ 1

z � Δω0 � g20
J2 z þ iγ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z þ iγ)2 � 4J2

p� � : (A4)

The square root in the denominator of Eq. (A4) introduces a
branch cut along the segment I ¼ (�2J � iγ, 2J � iγ) on the line

Im(z) ¼ �γ, corresponding to the cut shown in Fig. 2 after the
substitution s ¼ �iz.

Because G(z) is discontinuous across the branch cut, G(z) can
be analytically continued to a second Riemann sheet, when cross-
ing the cut, from one side to the other one, yielding G(II)(z).
The analytic continuation should be considered when deforming
the path integral in Eq. (13) to cross the branch cut, as shown
in Fig. 2. The poles of G(II)(z), denoted by Z1(λ), Z2(λ), . . ., are
distinct from those on the first sheet. These poles do not belong to
the spectrum of HNH ; instead, they correspond to “unphysical”
solutions of the Schrödinger equation HNH jψi ¼ zjψi, whose
eigenstates—known as Gamov’s or Siegert’s states57,65—are neither
normalizable bound states nor scattering states. Such states are typ-
ically classified as resonances, anti-resonances, and anti-bound
states;61,62,64 for the specific waveguide QED model considered in
the main text, they are discussed in Appendix B. Despite their
unphysical nature, resonances play a central role in shaping tran-
sient dynamics and scattering features, such as Breit–Wigner or
Fano resonances.57–59

A virtual EP is then defined as the coalescence of two (or
more) resonance poles Zk(λ) of the analytically continued resol-
vent on the second Riemann sheet, together with their associated
Siegert’s eigenstates, at a critical parameter value λ ¼ Λc.
Importantly, at λ ¼ Λc, the Hamiltonian HNH remains diagonaliz-
able and does not host any EP in its physical spectrum—hence
the terminology “virtual” EP.

APPENDIX B: ATOM–PHOTON BOUND STATES
AND RESONANT STATES

Bound atom–photon states and resonant states of the effective
NH Hamiltonian HNH can be determined by solving the eigenvalue
problem,

HNH jψi ¼ zjψi, (B1)

with Siegert boundary conditions,57,61,65,82 where z is the complex
energy of the state related to the pole s of ĉa(s) via the simple relation
z ¼ is. From Eq. (7), the eigenvalue problem (B1) takes the form

zca ¼ Δω0ca þ g0b1,

zb1 ¼ g0ca � Jb2 � iγb1,

zbn ¼ �J(bnþ1 þ bn�1)� iγbn, n � 2:

(B2)

The Siegert boundary conditions correspond to assuming a single
plane wave, with complex Bloch wave number k, in the semi-infinite
lattice, i.e., by letting in Eq. (B2),

bn ¼ exp(ikn) ¼ Xn, (B3)

where X ¼ exp(ik) and where the real part of k, kR, is assumed to
vary in the range �π , kR , π. The Siegert boundary condition is
basically equivalent to state that, in a scattering problem on the semi-
infinite lattice with an edge defect, described by HNH [Eq. (B2)], the
reflection amplitude vanishes or diverges for an incident wave.
Substitution of Eq. (B3) into Eq. (B2) and eliminating the amplitude
ca yields
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k ¼ �i logX ¼ �i log
1
J

g20
z � Δω0

� z � iγ

� �� �
, (B4)

where z in a root of the second-order algebraic equation

(1� 2σ)z2 � 2iz σγ þ i(σ � 1)Δω0f g þ 4σ2J2 þ Δω2
0 þ 2iγσΔω0 ¼ 0,

(B5)

with σ ; g20=(2J
2). Note that, after letting z ¼ is, Eq. (B5) is pre-

cisely Eq. (20) given in the main text that determines the poles of
ĉa(s) on the first or second Riemann sheets. Since Eq. (B5) is of
second order, there are two roots z1,2, i.e., s1,2 ¼ �iz1,2, with corre-
sponding complex wave numbers k1,2 obtained from Eq. (B4).
An atom–photon bound state, corresponding to an eigenenergy z
belonging to the point spectrum of HNH , is a root to Eq. (B5) corre-
sponding to a positive imaginary part of k, i.e., kI . 0 or equiva-
lently jXj , 1. It can be readily shown that for an atom–photon

FIG. 12. Typology of eigenstates of the equation HNH jψi ¼ zjψi in the
complex k plane under Siegert boundary conditions, illustrating resonant, anti-
resonant, and bound states.

FIG. 13. Typical behavior of the complex Bloch wave numbers k1,2 (upper plots) and corresponding complex energies z ¼ is (lower plots) of bound and resonant/anti-
resonant states, as given by Eqs. (B4) and (B5), vs loss rate γ=J in the three coupling regimes. (a) Weak-coupling regime (g0=J ¼ 0:8), (b) moderate-coupling regime
(g0=J ¼ 1:2), and (c) strong-coupling regime (g0=J ¼ 2). The bold (thin) curves refer to the real (imaginary) parts of k ¼ kR þ ikI and s, whereas the two colors (red and
blue) refer to the two roots. The green dashed curve in the lower panels is the normalized loss rate γ=J. States with kI . 0 are bound states, whereas states with kI , 0
are resonant states for kR . 0 or anti-resonant states for kR , 0. The real part of s for a resonant state is always smaller than �γ; i.e., it is located below the green
dashed curves. The critical values γc1 and γc2 , γc1 of dissipation rates are given by Eqs. (22) and (27) in the main text. In the weak-coupling regime [panels (a)], there
is one resonant and one anti-resonant state for γ , γc1 , while there is a bound state and a resonant state for γ . γc1 . In the moderate-coupling regime [panels (b)],
there are two resonant states for γ , γc1 , while there is a bound state and a resonant state for γ . γc1 . At γ ¼ γc2 , the two resonant states coalesce, corresponding to
a virtual EP. Finally, in the strong-coupling regime [panels (c)], there are two bound states for γ , γc1 , while there is a bound state and a resonant state for γ . γc1 . At
γ ¼ γc2 , the two bound states coalesce, corresponding to a physical EP.
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bound state, one has 0 � Re(s) � �γ; i.e., the decay rate of the
atom–photon bound state is smaller than the loss rate γ of the bath.
Conversely, a root to Eq. (B5) with a negative imaginary part of k,
i.e., kI , 0 or equivalently jXj . 1, is unbounded as n ! 1 and,
thus, does neither belong to the point spectrum nor to the absolutely
continuous spectrum of HNH . Such “unphysical” states correspond to
resonant states for 0 , kR , π (outgoing waves) and to anti-
resonant states for �π , kR , 0 (incoming waves);61 see Fig. 12 for
a schematic. It can be readily shown that for a resonant state, one
has Re(s) , �γ; i.e., the decay rate of a resonant state is always
larger than the dissipation rate γ of the bath, whereas for anti-
resonant states, one has Re(s) . 0, so that they do not contribute to
the spontaneous emission process of the quantum emitter. The exis-
tence of bound, resonant, and anti-resonant states is greatly affected
by the atom–photon coupling rate g0=J and loss rate γ=J of the bath.
Typical behaviors of real and imaginary parts of the complex Bloch
wave number k ¼ kR þ ikI and of the two roots s1,2 ¼ �iz1,2 of the
algebraic equation (20) vs loss rate γ=J in the three coupling regimes
(weak-coupling g0=J , 1, moderate-coupling 1 , g0=J ,

ffiffiffi
2

p
, and

strong-coupling g0=J .
ffiffiffi
2

p
) are illustrated in Fig. 13. Note that in

the weak-coupling regime [Fig. 13(a)], there is one resonant state
and one anti-resonant state for γ , γc1 , while there is a bound state
and a resonant state for γ . γc1 . In the moderate-coupling regime
[Fig. 13(b)], there are two resonant states for γ , γc1 , while there is
a bound state and a resonant state for γ . γc1 . At γ ¼ γc2 , the two
resonant states coalesce, corresponding to a virtual EP. Finally, in the
strong-coupling regime [Fig. 13(c)], there are two bound states for
γ , γc1 , while there is a bound state and a resonant state for
γ . γc1 . At γ ¼ γc2 , the two bound states coalesce, corresponding to
an EP of the NH Hamiltonian.

REFERENCES
1P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielson, and S. Bay, “Fundamental
quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455 (2000).
2H. J. Kimble, “The quantum internet,” Nature 453, 1023 (2008).
3J. Q. You and F. Nori, “Atomic physics and quantum optics using supercon-
ducting circuits,” Nature 474, 589 (2011).
4P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and
single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87, 347
(2015).
5D. E. Chang, J. S. Douglas, A. Gonzalez-Tudela, C.-L. Hung, and H. J. Kimble,
“Colloquium: Quantum matter built from nanoscopic lattices of atoms and
photons,” Rev. Mod. Phys. 90, 031002 (2018).
6J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic
quantum technologies,” Nat. Photonics 14, 273 (2020).
7A. A. Houck, H. E. Türeci, and J. Koch, “On-chip quantum simulation with
superconducting circuits,” Nat. Phys. 8, 292 (2012).
8S. Schmidt and J. Koch, “Circuit QED lattices: Towards quantum simulation
with superconducting circuits,” Ann. Phys. 525, 395 (2013).
9A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, “Circuit quantum elec-
trodynamics,” Rev. Mod. Phys. 93, 025005 (2021).
10C. Gross and I. Bloch, “Quantum simulations with ultracold atoms in optical
lattices,” Science 357, 995 (2017).
11F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, “Tools for
quantum simulation with ultracold atoms in optical lattices,” Nat. Rev. Phys. 2,
411 (2020).
12C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog.
Phys. 70, 947 (2007).

13N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University
Press, 2011).
14Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda,
“Topological phases of non-Hermitian systems,” Phys. Rev. X 8, 031079 (2018).
15K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, “Symmetry and topology in
non-Hermitian physics,” Phys. Rev. X 9, 041015 (2019).
16Y. Ashida, Z. Gong, and M. Ueda, “Non-Hermitian physics,” Adv. Phys. 69,
249 (2020).
17E. J. Bergholtz, J. C. Budich, and F. K. Kunst, “Exceptional topology of
non-Hermitian systems,” Rev. Mod. Phys. 93, 015005 (2021).
18K. Ding, C. Fang, and G. Ma, “Non-Hermitian topology and exceptional-point
geometries,” Nat. Rev. Phys. 4, 745 (2022).
19S. Longhi, “Quantum decay and amplification in a non-Hermitian unstable
continuum,” Phys. Rev. A 93, 062129 (2016).
20F. Roccati, S. Lorenzo, G. Calajo, G. M. Palma, A. Carollo, and F. Ciccarello,
“Exotic interactions mediated by a non-Hermitian photonic bath,” Optica 9, 565
(2022).
21Z. Gong, M. Bello, D. Malz, and F. K. Kunst, “Anomalous behaviors of
quantum emitters in non-Hermitian baths,” Phys. Rev. Lett. 129, 223601 (2022).
22Z. Gong, M. Bello, D. Malz, and F. K. Kunst, “Bound states and photon emis-
sion in non-Hermitian nanophotonics,” Phys. Rev. A 106, 053517 (2022).
23L. Du, L. Guo, Y. Zhang, and A. F. Kockum, “Giant emitters in a structured
bath with non-Hermitian skin effect,” Phys. Rev. Res. 5, L042040 (2023).
24F. Roccati, M. Bello, Z. Gong, M. Ueda, F. Ciccarello, A. Chenu, and
A. Carollo, “Hermitian and non-Hermitian topology from photon-mediated
interactions,” Nat. Commun. 15, 2400 (2024).
25Z.-F. Cai, X. Wang, Z.-X. Liang, T. Liu, and F. Nori, “Chiral-extended
photon-emitter dressed states in non-Hermitian topological baths,” Phys. Rev. A
111, L061701 (2025).
26T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1966).
27W. D. Heiss, “The physics of exceptional points,” J. Phys. A: Math. Theor. 45,
444016 (2012).
28M. V. Berry, “Physics of non-Hermitian degeneracies,” Czech. J. Phys. 54,
1039 (2004).
29M.-A. Miri and A. Alú, “Exceptional points in optics and photonics,” Science
363, eaar7709 (2019).
30S. K. Ozdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and
exceptional points in photonics,” Nat. Mater. 18, 783 (2019).
31S. Garmon, T. Sawada, K. Noba, and G. Ordonez, “Characteristic influence of
exceptional points in quantum dynamics,” J. Phys.: Conf. Ser. 2038, 012011
(2021).
32C. Wang, Z. Fu, W. Mao, J. Qie, A. D. Stone, and L. Yang, “Non-Hermitian
optics and photonics: From classical to quantum,” Adv. Opt. Photonics 15, 442
(2023).
33J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detec-
tion by using exceptional points: Application to microcavity sensors for single-
particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
34W. Chen, S. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points
enhance sensing in an optical microcavity,” Nature 548, 192 (2017).
35H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy,
D. N. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-
order exceptional points,” Nature 548, 187 (2017).
36Z.-P. Liu, J. Zhang, S. K. Ozdemir, B. Peng, H. Jing, X.-Y. Lu, C.-W. Li,
L. Yang, F. Nori, and Y.-x. Liu, “Metrology with PT-symmetric cavities:
Enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802
(2016).
37S. Longhi, “Quantum interference and exceptional points,” Opt. Lett. 43, 5371
(2018).
38S. Longhi and G. Della Valle, “Optical lattices with exceptional points in the
continuum,” Phys. Rev. A 89, 052132 (2014).
39L. Xiao, K. Wang, X. Zhan, Z. Bian, K. Kawabata, M. Ueda, W. Yi, and P. Xue,
“Observation of critical phenomena in parity-time-symmetric quantum dynam-
ics,” Phys. Rev. Lett. 123, 230401 (2019).

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 138, 184401 (2025); doi: 10.1063/5.0299681 138, 184401-11

© Author(s) 2025

 26 N
ovem

ber 2025 13:43:03

https://doi.org/10.1088/0034-4885/63/4/201
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature10122
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1103/RevModPhys.90.031002
https://doi.org/10.1038/s41566-019-0532-1
https://doi.org/10.1038/nphys2251
https://doi.org/10.1002/andp.201200261
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1038/s42254-020-0195-3
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1038/s42254-022-00516-5
https://doi.org/10.1103/PhysRevA.93.062129
https://doi.org/10.1364/OPTICA.443955
https://doi.org/10.1103/PhysRevLett.129.223601
https://doi.org/10.1103/PhysRevA.106.053517
https://doi.org/10.1103/PhysRevResearch.5.L042040
https://doi.org/10.1038/s41467-024-46471-w
https://doi.org/10.1103/8qpx-68x6
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1088/1742-6596/2038/1/012011
https://doi.org/10.1364/AOP.475477
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1038/nature23281
https://doi.org/10.1038/nature23280
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1364/OL.43.005371
https://doi.org/10.1103/PhysRevA.89.052132
https://doi.org/10.1103/PhysRevLett.123.230401
https://pubs.aip.org/aip/jap


40Y. Chu, Y. Liu, H. Liu, and J. Cai, “Quantum sensing with a single-qubit
pseudo-Hermitian system,” Phys. Rev. Lett. 124, 020501 (2020).
41J. Wiersig, “Prospects and fundamental limits in exceptional point-based
sensing,” Nat. Commun. 11, 2454 (2020).
42J. Wiersig, “Review of exceptional point-based sensors,” Photonics Res. 8,
1457 (2020).
43W. D. Heiss and H. L. Harney, “The chirality of exceptional points,” Eur.
Phys. J. D 17, 149 (2001).
44C. Dembowski, B. Dietz, H.-D. Graf, H. L. Harney, A. Heine, W. D. Heiss, and
A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett.
90, 034101 (2003).
45J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch,
T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, “Dynamically encircling an
exceptional point for asymmetric mode switching,” Nature 537, 76 (2016).
46H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, “Topological energy transfer in
an optomechanical system with exceptional points,” Nature 537, 80 (2016).
47S. Longhi, “Floquet exceptional points and chirality in non-Hermitian
Hamiltonians,” J. Phys. A 50, 505201 (2017).
48P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and
L. Feng, “Orbital angular momentum microlaser,” Science 353, 464 (2016).
49M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, “Quantum state
tomography across the exceptional point in a single dissipative qubit,” Nat. Phys.
15, 1232 (2019).
50L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, and P. Xue, “Observation of
non-Bloch parity-time symmetry and exceptional points,” Phys. Rev. Lett. 126,
230402 (2021).
51X.-W. Luo, C. Zhang, and S. Du, “Quantum squeezing and sensing with
pseudo anti-parity-time symmetry,” Phys. Rev. Lett. 128, 173602 (2022).
52W. Chen, M. Abbasi, B. Ha, S. Erdamar, Y. N. Joglekar, and K. W. Murch,
“Decoherence-induced exceptional points in a dissipative superconducting
qubit,” Phys. Rev. Lett. 128, 110402 (2022).
53R. Huang, S. K. Özdemir, J. Q. Liao, F. Minganti, L.-M. Kuang, F. Nori, and
H. Jing, “exceptional photon blockade: Engineering photon blockade with chiral
exceptional points,” Laser Photonics Rev. 16, 2100430 (2022).
54S. Longhi, “Dark-state photonic entanglement filters,” Opt. Lett. 50, 5101 (2025).
55P.-R. Han, F. Wu, X.-J. Huang, H.-Z. Wu, C.-L. Zou, W. Yi, M. Zhang, H. Li,
K. Xu, D. Zheng, H. Fan, J. Wen, Z.-B. Yang, and S.-B. Zheng, “Exceptional
entanglement phenomena: Non-Hermiticity meeting nonclassicality,” Phys. Rev.
Lett. 131, 260201 (2023).
56P.-R. Han, W. Ning, X.-J. Huang, R.-H. Zheng, S.-B. Yang, Z.-B. Wu, F. Yang,
Q.-P. Su, C.-P. Yang, and S.-B. Zheng, “Measuring topological invariants for
higher-order exceptional points in quantum three-mode systems,” Nat.
Commun. 15, 10293 (2024).
57N. Moiseyev, “Quantum theory of resonances: Calculating energies, widths
and cross-sections by complex scaling,” Phys. Rep. 302, 212 (1998).
58J. Okołowicz, M. Płoszajczak, and I. Rotter, “Dynamics of quantum systems
embedded in a continuum,” Phys. Rep. 374, 271 (2003).
59I. Rotter, “A non-Hermitian Hamilton operator and the physics of open
quantum systems,” J. Phys. A: Math. Theor. 42, 153001 (2009).
60S. Garmon, I. Rotter, N. Hatano, and D. Segal, “Analysis technique for excep-
tional points in open quantum systems and QPT analogy for the appearance of
irreversibility,” Int. J. Theor. Phys. 51, 3536 (2012).
61N. Hatano, “Equivalence of the effective Hamiltonian approach and the
Siegert boundary condition for resonant states,” Fortschr. Phys. 61, 238 (2013).
62S. Garmon, M. Gianfreda, and N. Hatano, “Bound states, scattering states, and
resonant states in PT-symmetric open quantum systems,” Phys. Rev. A 02,
022125 (2015).
63K. Kanki, S. Garmon, S. Tanaka, and T. Petrosky, “Exact description of coa-
lescing eigenstates in open quantum systems in terms of microscopic
Hamiltonian dynamics,” J. Math. Phys. 58, 092101 (2017).
64N. Hatano, K. Sasada, H. Nakamura, and T. Petrosky, “Some properties of the
resonant state in quantum mechanics and its computation,” Prog. Theor. Phys.
119, 187 (2008).

65S. Garmon and K. Noba, “Reservoir-assisted symmetry breaking and coalesced
zero-energy modes in an open PT-symmetric Su-Schrieffer-Heeger model,”
Phys. Rev. A 104, 062215 (2021).
66M. Gadella and G. P. Pronko, “The Friedrichs model and its use in resonance
phenomena,” Fortschr. Phys. 59, 795 (2011).
67F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, “Quantum excep-
tional points of non-Hermitian Hamiltonians and Liouvillians: The effects of
quantum jumps,” Phys. Rev. A 100, 062131 (2019).
68F. Minganti, A. Miranowicz, R. W. Chhajlany, I. I. Arkhipov, and F. Nori,
“Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian
Hamiltonians and Liouvillians via postselection of quantum trajectories,” Phys.
Rev. A 101, 062112 (2020).
69S. Khandelwal, N. Brunner, and G. Haack, “Signatures of Liouvillian excep-
tional points in a quantum thermal machine,” PRX Quantum 2, 040346 (2021).
70W. Chen, M. Abbasi, Y. N. Joglekar, and K. W. Murch, “Quantum jumps in
the non-Hermitian dynamics of a superconducting qubit,” Phys. Rev. Lett. 127,
140504 (2021).
71J.-T. Bu, J.-Q. Zhang, G.-Y. Ding, J.-C. Li, J.-W. Zhang, B. Wang, W.-Q. Ding,
W.-F. Yuan, L. Chen, S. K. Özdemir, F. Zhou, H. Jing, and M. Feng,
“Enhancement of quantum heat engine by encircling a Liouvillian exceptional
point,” Phys. Rev. Lett. 130, 110402 (2023).
72S. Abo, P. Tulewicz, K. Bartkiewicz, S. K. Özdemir, and A. Miranowicz,
“Experimental Liouvillian exceptional points in a quantum system without
Hamiltonian singularities,” New J. Phys. 26, 123032 (2024).
73H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, “Topological dynamics in an
optomechanical system with highly non-degenerate modes,” arXiv:1703.07374
(2017).
74P. Renault, H. Yamaguchi, and I. Mahboob, “Virtual exceptional points in an
electromechanical system,” Phys. Rev. Appl. 11, 024007 (2019).
75J.-D. Lin, P.-C. Kuo, N. Lambert, A. Miranowicz, F. Nori, and Y.-N. Chen,
“Non-Markovian quantum exceptional points,” Nat. Commun. 16, 1289 (2025).
76G. Gamow, “Zur quantentheorie des atomkernes,” Z. Phys. 51, 204 (1928).
77L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum
systems,” Rep. Prog. Phys. 41, 587 (1978).
78H. Nakazato, M. Namiki, and S. Pascazio, “Temporal behavior of quantum
mechanical systems,” Int. J. Mod. Phys. B 10, 247 (1996).
79F.-M. Dittes, “The decay of quantum systems with a small number of open
channels,” Phys. Rep. 339, 215 (2000).
80P. Facchi, H. Nakazato, and S. Pascazio, “From the quantum Zeno to the
inverse quantum Zeno effect,” Phys. Rev. Lett. 86, 2699 (2001).
81S. Tanaka, S. Garmon, and T. Petrosky, “Nonanalytic enhancement of the
charge transfer from adatom to one-dimensional semiconductor superlattice and
optical absorption spectrum,” Phys. Rev. B 73, 115340 (2006).
82S. Garmon, G. Ordonez, and K. Noba, “Weak-coupling bound states in semi-
infinite topological waveguide QED,” arXiv:2503.07211 (2025).
83G. Teza, R. Yaacoby, and O. Raz, “Eigenvalue crossing as a phase transition in
relaxation dynamics,” Phys. Rev. Lett. 130, 207103 (2023).
84S. Longhi, “Dynamical phase transitions in open quantum walks,” Adv.
Quantum Technol. e00539 (published online 2025).
85A. Mostafazadeh, “Spectral singularities of complex scattering potentials and
infinite reflection and transmission coefficients at real energies,” Phys. Rev. Lett.
102, 220402 (2009).
86A. Mostafazadeh, “Resonance phenomenon related to spectral singularities,
complex barrier potential, and resonating waveguides,” Phys. Rev. A 80, 032711
(2009).
87S. Longhi, “Spectral singularities in a non-Hermitian Friedrichs-Fano-
Anderson model,” Phys. Rev. B 80, 165125 (2009).
88S. Longhi, “Optical realization of relativistic non-Hermitian quantum
mechanics,” Phys. Rev. Lett. 105, 013903 (2010).
89F. Lombardo, F. Ciccarello, and G. M. Palma, “Photon localization versus pop-
ulation trapping in a coupled-cavity array,” Phys. Rev. A 89, 053826 (2014).
90G. Calajò, F. Ciccarello, D. Chang, and P. Rabl, “Atom-field dressed states in
slow-light waveguide QED,” Phys. Rev. A 93, 033833 (2016).

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 138, 184401 (2025); doi: 10.1063/5.0299681 138, 184401-12

© Author(s) 2025

 26 N
ovem

ber 2025 13:43:03

https://doi.org/10.1103/PhysRevLett.124.020501
https://doi.org/10.1038/s41467-020-16373-8
https://doi.org/10.1364/PRJ.396115
https://doi.org/10.1007/s100530170017
https://doi.org/10.1007/s100530170017
https://doi.org/10.1103/PhysRevLett.90.034101
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18604
https://doi.org/10.1088/1751-8121/aa931f
https://doi.org/10.1126/science.aaf8533
https://doi.org/10.1038/s41567-019-0652-z
https://doi.org/10.1103/PhysRevLett.126.230402
https://doi.org/10.1103/PhysRevLett.128.173602
https://doi.org/10.1103/PhysRevLett.128.110402
https://doi.org/10.1002/lpor.202100430
https://doi.org/10.1364/OL.565738
https://doi.org/10.1103/PhysRevLett.131.260201
https://doi.org/10.1103/PhysRevLett.131.260201
https://doi.org/10.1038/s41467-024-54662-8
https://doi.org/10.1038/s41467-024-54662-8
https://doi.org/10.1016/S0370-1573(98)00002-7
https://doi.org/10.1016/S0370-1573(02)00366-6
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1007/s10773-012-1240-5
https://doi.org/10.1002/prop.201200064
https://doi.org/10.1103/PhysRevA.92.022125
https://doi.org/10.1063/1.5002689
https://doi.org/10.1143/PTP.119.187
https://doi.org/10.1103/PhysRevA.104.062215
https://doi.org/10.1002/prop.201100038
https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1103/PhysRevA.101.062112
https://doi.org/10.1103/PhysRevA.101.062112
https://doi.org/10.1103/PRXQuantum.2.040346
https://doi.org/10.1103/PhysRevLett.127.140504
https://doi.org/10.1103/PhysRevLett.130.110402
https://doi.org/10.1088/1367-2630/ad98b6
https://arxiv.org/abs/1703.07374
https://doi.org/10.1103/PhysRevApplied.11.024007
https://doi.org/10.1038/s41467-025-56242-w
https://doi.org/10.1007/BF01343196
https://doi.org/10.1088/0034-4885/41/4/003
https://doi.org/10.1142/S0217979296000118
https://doi.org/10.1016/S0370-1573(00)00065-X
https://doi.org/10.1103/PhysRevLett.86.2699
https://doi.org/10.1103/PhysRevB.73.115340
https://arxiv.org/abs/2503.07211
https://doi.org/10.1103/PhysRevLett.130.207103
https://doi.org/10.1002/qute.202500539
https://doi.org/10.1002/qute.202500539
https://doi.org/10.1103/PhysRevLett.102.220402
https://doi.org/10.1103/PhysRevA.80.032711
https://doi.org/10.1103/PhysRevB.80.165125
https://doi.org/10.1103/PhysRevLett.105.013903
https://doi.org/10.1103/PhysRevA.89.053826
https://doi.org/10.1103/PhysRevA.93.033833
https://pubs.aip.org/aip/jap


91E. Sánchez-Burillo, D. Zueco, L. Martín-Moreno, and J. J. García-Ripoll,
“Dynamical signatures of bound states in waveguide QED,” Phys. Rev. A 96,
023831 (2017).
92M. Scigliuzzo, G. Calajò, F. Ciccarello, D. Perez Lozano, A. Bengtsson,
P. Scarlino, A. Wallraff, D. Chang, P. Delsing, and S. Gasparinetti, “Controlling
atom-photon bound states in an array of Josephson junction resonators,” Phys.
Rev. X 12, 031036 (2022).
93Z. Lu, J. Li, J. Lu, and L. Zhou, “Controlling atom-photon bound states in a
coupled resonator array with a two-level quantum emitter,” Opt. Lett. 49, 806
(2024).
94S. Longhi, “Quantum Mpemba effect from initial system-reservoir entangle-
ment,” APL Quantum 2, 026133 (2025).
95S. Longhi, “Virtual atom-photon bound states and spontaneous emission
control,” Opt. Lett. 50, 3026 (2025).

96F. Beaudoin, J. M. Gambetta, and A. Blais, “Dissipation and ultrastrong cou-
pling in circuit QED,” Phys. Rev. A 84, 043832 (2011).
97F. Roccati, G. M. Palma, F. Ciccarello, and F. Bagarello, “Non-Hermitian
physics and master equations,” Open Syst. Inf. Dyn. 29, 2250004 (2022).
98S. Longhi, “Non-Markovian decay and lasing condition in an optical micro-
cavity coupled to a structured reservoir,” Phys. Rev. A 74, 063826 (2006).
99A. Crespi, F. V. Pepe, P. Facchi, F. Sciarrino, P. Mataloni, H. Nakazato,
S. Pascazio, and R. Osellame, Phys. Rev. Lett. 122, 130401 (2019).
100S. Longhi, “Bound states in the continuum in a single-level Fano-Anderson
model,” Eur. Phys. J. B 57, 45 (2007).
101V. Popkov, S. Essink, C. Presilla, and G. Schütz, “Effective quantum Zeno
dynamics in dissipative quantum systems,” Phys. Rev. A 98, 052110 (2018).
102S. Longhi, “Breaking the exponential: Decoherence-driven power-law spontaneous
emission in waveguide quantum electrodynamics,” Laser Photon. Rev. (unpublished).

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 138, 184401 (2025); doi: 10.1063/5.0299681 138, 184401-13

© Author(s) 2025

 26 N
ovem

ber 2025 13:43:03

https://doi.org/10.1103/PhysRevA.96.023831
https://doi.org/10.1103/PhysRevX.12.031036
https://doi.org/10.1103/PhysRevX.12.031036
https://doi.org/10.1364/OL.513907
https://doi.org/10.1063/5.0266143
https://doi.org/10.1364/OL.561740
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1142/S1230161222500044
https://doi.org/10.1103/PhysRevA.74.063826
https://doi.org/10.1103/PhysRevLett.122.130401
https://doi.org/10.1140/epjb/e2007-00143-2
https://doi.org/10.1103/PhysRevA.98.052110
https://pubs.aip.org/aip/jap

