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ABSTRACT

The famous Two-Temperature Model (TTM) used extensively in the investigations of energy relaxation in photo excited systems originated in
the seminal work of Kaganov et al. [Sov. J. Exp. Theor. Phys. 4, 173 (1957)]. The idea that with an ultrashort laser pulse a temporal (transient)
state of electrons in a metal can be created, in which electrons after absorbing energy from the laser pulse heat up and their temperature
becomes substantially greater than that of lattice, was originated in the work of Anisimov et al. [Sov. J. Exp. Theor. Phys. 39, 375 (1974)].
The heated electron sub-system (hot electrons) loses its energy to phonon sub-system via electron-phonon scattering, and thermodynamic
equilibrium re-establishes over a time scale of a few picoseconds in metals. This field saw great developments in the 1980s and 1990s with the
advent of femtosecond pump-probe spectroscopy. From 2000 onward, focus shifted from non-equilibrium phenomena in simple metals to
those in more complex systems including strongly correlated systems such as high Tc cuprate superconductors. P. B. Allen, Phys. Rev. Lett.
59, 1460 (1987), revisits the calculations of KLT and rewrites the electron-phonon heat transfer coefficient « in terms of a very important
parameter in the theory of superconductivity (A(w?)). This has far reaching consequences; A, a very crucial dimensionless electron-phonon
coupling parameter for a given superconducting material, can be estimated by doing pump-probe experiments on it. By mid 1990s, it became
clear that TTM is violated and is not a sufficient model to discuss non-equilibrium relaxation. Year 2000 onward, field saw the development of
models that go beyond the original TTM. Very recently, the field has entered into the attosecond domain. In this article, the author attempts
a concise account of the development of the TTM and, in addition, a recent possible revival of it in the attosecond domain.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0262933
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I. INTRODUCTION

The idea of the two-temperature model of hot electron relax-
ation in metals originated in studies of radiation damage in metals
caused by very high-energy ions when metals are exposed to such
ions. It all started near the end of World War II in 1945, and such
studies were carried out in the so-called “Laboratory No. 1” at the
Ukrainian Physico-Technical Institute (UPTI) in Bazaliy et al.' This
section was then headed by Akhiezer and Lifshitz, and Kaganov
joined to work on these projects related to radiation damage in met-
als by high-energy ions, as well as other topics in metal physics.”
For several years, the results were not announced (they were kept
classified), and finally, some of the results were published in 1957.°

The understanding that originated from those studies can be
expressed in the following way: It was pointed out that the damage
in a metal caused by high-energy ions occurs through a series of cas-
cade processes, and various relaxation processes are separated from
each other in time. High-energy ions, as they penetrate into a metal,
first transfer their energy to electrons, as electrons have much less
specific heat than the lattice. Due to this, the electron sub-system
heats up preferentially, and internal electron-electron scattering
leads to a hot Fermi-Dirac distribution of electrons at an elevated
temperature. This hot electron distribution then transfers its energy
to the phonon sub-system via slower electron-phonon scattering.
They argued that electron-electron relaxation is much faster (occur-
ring on a sub-picosecond timescale) compared to electron-lattice
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relaxation (which occurs on a several-picosecond timescale). During
the electron-phonon scattering, the electron distribution remains
in an equilibrium Fermi-Dirac distribution but at an elevated
temperature.

Il. A BIT OF HISTORY

The first method used by them is a classical one in which radi-
ation of sound waves by a fast moving electron through the lattice
(“Cerenkov” radiation) is computed by considering excitation of
vibrations of an elastic continuum (on the lines of a method devel-
oped by Landau*). The second method, which is fully quantum, is an
extension of a beautiful set of calculations by Akhiezer and Pomer-
anchuk.” Akhiezer and Pomeranchuk considered the mechanism
of spin-lattice relaxation in the context of the magnetic method of
cooling and used the Bloch-Boltzmann kinetic equation. Kaganov,
Lifshitz, and Tanatarov (Fig. 1) applied the Akhiezer-Pomeranchuk
method for the computation of relaxation time between hot elec-
trons and lattice. The idea of laser excitation of electrons was not
there at that time. In fact, laser was not discovered at that time
(it came only in 1960 due to investigations of Theodore Maiman
and others). These authors considered non-equilibrium between
electrons and lattice as arising due to the passage of high energy
ions in metals and also when large current is passed through a
metal, such that Ohm’s law is violated.” In Sec. III, we review the
Two-Temperature Model (TTM).

lll. THE TWO-TEMPERATURE MODEL (TTM)

Kaganov-Lifshitz-Tanatarov (KLT)® assumed that after prefer-
ential heating, electrons quickly regain the Fermi-Dirac distribution
(via electron-electron collisions), albeit at an elevated temperature
(that is, “hot” Fermi-Dirac distribution),

1 1
S = 1
fk eﬁe(fk—fr) +1 ﬂe kgT, M

where T, is the temperature of the electron sub-system (greater than
the lattice temperature T during the process of relaxation). ¢ is the

Fermi energy. Free electron model ¢ = hzTI; was assumed, where m is

Moisey I. Kaganov
(1921-2019)

llya M. Lifshitz
(1917-1982)

L. V. Tanatarov
(1929 - 2020)

FIG. 1. Through this article, the author pays his tribute to the pioneers of the
two-temperature model. Image courtesy: Kaganov (from Bazaliy via personal com-

pubs.aip.org/aip/apq

the mass of an electron and k is the magnitude of the electron wave-
vector. For phonons, equilibrium Bose distribution was assumed,

1 1
- - 2
ng T B kT (2)

where g is the magnitude of the wave-vector of an acoustic phonon
mode (the Debye model was used for phonon sub-system) and
wq = ¢sq, in which ¢ is the sound speed for acoustic phonons. During
the process of relaxation, T, remains greater than T. Heat transfers
from electron sub-system to phonon sub-system, and then, by the
process of diffusion, it goes out to the substrate or environment.

Authors compute the amount of average energy transferred by
electrons to lattice per unit volume and per unit time,

_ &g .
= f Pr (zﬂ‘§3thwq. 3)

Here, Nq is the rate at which phonons are generated with wave-
vector g per unit volume. Each phonon carries energy of amount
hwy. Thus, Nghw, is the amount of energy transferred (per sec per
unit volume) to phonon modes with wave vector lying in the range g
to g + dg. For the computation of Ny, they use the Bloch-Boltzmann
equation,

Nq:z_/dk Wi fe (1= fi)[(ng + 1)

(2n)*
x 8(ep — & — hiwg) — ngd(ey — & + hwg) ], 4)
nU?
Wi = FTC?wq, q=k-K. (5)

Here, U is the electron-phonon coupling constant, p is the density
of metal, V is the unit cell volume, ¢, is the sound speed, and wy is
the phonon frequency with wave-vector q. By using the expressions
(1) and (2) for Fermi and Bose functions at different temperatures
and by imposing the assumption er > kpT. > hw, (generally valid
for metals), the above equation [Eq. (4)] can be written as

~ mZ Uzhwq eﬁhwq _ eﬁehwq
17 2kt pvies (P — 1) (P — 1)

(6)

Technical details are given in Refs. 6 and 7. Using the Debye model
for phonons, the average energy transferred by electrons to lattice
per unit volume and per unit time [Eq. (3)] can be written as

Oea (L)sfl“ x“dx_(l)Sf%" tdx ”
N o) Jo é&-1 \Tp) Jo €-1]
2m* U (ks Tp)®
(2n)® h7pc?
following special cases:
CASE A: In the low temperature limit T, T. << Tp, the above
expression gives

where A = . The above expression simplifies in the

munication); Lifshitz (Wikipedia commons); and Tanatarov [from Igor Tanatarov _ 5 5 o xdx
(grandson of Tanatarov) via personal communication]. U=B(T,-T), B=A fo 1 (8)
APL Quantum 2, 021502 (2025); doi: 10.1063/5.0262933 2,021502-2
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In 2D, instead of T°, it is T* behavior.® In a further sub-case
(Te-T << T« Tp), we get

277'r2mcfn T.—-T

U= 9
3 ¢(T) T ©)
CASE B: In the high temperature limit T, T. > Tp, Eq. (7) leads
to
_ A
U=a(T.-T), = —. 10
W(T-T) - (10)
In a further sub-case (T - T < T, T » Tp), we get
2.2
] T.-T
g-=rmen (11)

6 (T) T

Here, TIT) is the equilibrium relaxation rate due to electron-phonon

scattering as it appears in the theory of resistivity of metals (in the
Bloch-Griieneisen formula).”"’

IV. TWO-TEMPERATURE MODEL (TTM) AND LASER
EXCITATION

The idea of the study of TTM using laser excitation originated
in 1973. Anisimov et al.'' pointed out that when a metal surface
is exposed to a picosecond laser pulse, emission current pulse (due
to ejected electrons) from the surface of the metal is practically un-
delayed relative to the laser pulse. This is due to small specific heat of
electrons leading to preferential heating of it, and during the course
of the laser pulse (over picosecond time scales), electrons remain
practically thermally insulated from the lattice. This preferential
heating of electrons leads to thermionic emission current pulse.
Thermionic emission occurs when kinetic energy of a small fraction
of electrons in a heated metallic sample exceeds the work function
of that metal such that they are able to escape from the metal sur-
face. That is, the thermionic emission of electrons is possible because
heat absorbed by electrons from the laser pulse remains in the elec-
tron sub-system for a short time scale of the order of picoseconds.
They underlined that by measuring the thermionic emission over
an extended timescale, electron-lattice relaxation kinetics can be
investigated. Laser pulses at that time were not short enough (not in
the femto-second regime), and the study of electron-phonon relax-
ation kinetics remained an open area of research for some time.
It is interesting to re-visit their argument regarding separation of
timescales.

The argument of the authors'' that the energy absorbed from
the laser pulse mostly remains trapped inside the electron sub-
system over a picosecond timescale goes as follows: They refer to
Eq. (9) in KLT paper® [Eq. (10) in Sec. II1] and estimate the heat
transfer coefficient a between electrons and lattice,

2012 5
U-a(To-T), a= U (keln)” (12)
2(27) R pcs Tp

They estimated the value of a ~ 10"erg/cm®/sec/deg. A typical
heating time for phonons can be estimated as ~ %, where C; is the
phonon heat capacity. It turns out that this time scale is of the order
of 100 ps (this is an order of magnitude greater than the heating time

pubs.aip.org/aip/apq

for electrons, and it translates to the fact that electronic heat capac-
ity is about two orders of magnitude smaller than that of the lattice).
Those “hot” electrons, which are not ejected out due to thermionic
emission, will transfer their energy to the lattice via electron-phonon
scattering. Thus, the authors argued that the evolution of disequi-
librium of electrons (or anomalous heating of electrons as called in
the literature in the 1980s) can be studied. However, it turns out
that picosecond laser pulses are not sufficient to observe the anoma-
lous heating of the electrons. An experiment in 1983 made it clear
[Sec. V1.

However, this sets a foundation for future experiments with
shorter pulses (fs) to study preferential heating of electron sub-
system and subsequent electron-phonon relaxations kinetics.

V. FIRST EXPERIMENTS THAT SHOWED THAT
ELECTRONS CAN BE SELECTIVELY EXCITED USING
ULTRASHORT LASER PULSES

The first attempt to observe preferential heating of electrons
(also called anomalous heating) was made by Eesley in 1983."
He used what is called Transient Thermomodulation Spectroscopy
(TTMS), which is an early version of the pump-probe spectroscopy.
He used 645 nm (1.92 eV) heating pulse (pump pulse) from a
dye laser with a temporal width of 8 ps, and the sample used was
a 400 nm copper film. The pump pulse heats up the electrons,
and this further changes the reflectivity of the copper film. The
changed reflectivity was measured by a time-delayed probe pulse
of similar width (8 ps) but weaker intensity. The probe pulse was
time delayed with respect to the pump pulse, and transient relative
reflectivity change (AR/R) was measured as a function of the time
delay between the pump pulse (heating pulse) and the probe pulse.
Eesley argued that anomalous heating of the electron sub-system is
observed."”

However, time resolution was very low (pulse width was 8 ps).
The data were mostly affected by the equilibrium heating of the
electrons (it turns out that electrons and lattice remained in equi-
librium on the time scale probed), and the temperature difference
between electrons and lattice was less than a few Kelvin! However,
Eesley noticed the need for femto-second laser pulses to differenti-
ate anomalous heating of the electron sub-system and to study the
kinetics of the electron-phonon relaxation. We quote his words as
follows:'”

“Extension of the technique into the femto-second
regime should provide the capability to measure directly
hot-electron relaxation times as a function of probe pho-
ton energy and as a function of both the transient and the
equilibrium sample temperatures.”

The first experimental observation of the anomalous heating
(non-equilibrium electron distribution) came in 1984."° Fujimoto
et al., using 75-fs optical pulses, demonstrated that electrons can
be selectively excited (anomalous heating) and the electron-phonon
relaxation happens on a timescale of 1 ps. The authors observe ther-
mally enhanced photoemission from a tungsten metal surface. The
key to the observation of anomalous heating is that the transient
electron heating due to the pump pulse enhances the photoemis-
sion signal induced by the second probe pulse. By varying the time

APL Quantum 2, 021502 (2025); doi: 10.1063/5.0262933
© Author(s) 2025

2,021502-3

0%:20:11 G202 AInr 62


https://pubs.aip.org/aip/apq

APL Quantum REVIEW

delay between pump and probe pulses, time evolution of the selec-
tively heated electron distribution can be studied. The estimated
time scale for non-equilibrium electron distribution is found to be
several hundred fs, and the electron-phonon coupling constant is
estimated to be of the order of 10" erg/cm?/sec/K, which agrees
with the estimate of Anisimov et al."!

The experiment of 1984'° opened the floodgates for the stud-
ies of the anomalous heating of electrons in metals. Several results
appeared in the late 1980s and early 1990s."*"”

As the field advanced, the questions asked also became sharper:
On what time scale does the non-equilibrium electron distribu-
tion (non-Fermi-Dirac distribution) goes to the FD distribution
via electron-electron scattering? How does the electron-phonon
scattering affect the relaxation within the electron sub-system?
Whether phonons always remain in equilibrium during the process
of electron-phonon relaxation? etc.

In 1987, this field saw an extension in a very novel way
(Sec. VI).

VI. USING ELECTRON-PHONON RELAXATION
TO INVESTIGATE 1 (AN IMPORTANT PARAMETER
IN SUPERCONDUCTIVITY)

In 1987, Allen revisits the TTM problem posed by Kaganov
et al. In a seminal work,'® he generalizes the TTM in two important
ways: (1) Instead of quadratic dispersion (g oc k*) valid for simple
metals (as used by KLT), Allen generalizes the KLT calculation for an
arbitrary dispersion ¢(k), and (2) Allen expresses « [refer to Eq. (12)]
in terms of a very important parameter used in superconductivity

theory (Mw?)),

dT. 30 {w?)
g -t as kT,

We briefly review this pioneering contribution. Allen uses the same
set of physical assumptions as used by KLT as follows:

(13)

1. The electron-electron (Coulombic) scattering is effective
in maintaining a local equilibrium distribution of elec-
trons [Fermi-Dirac distribution at an elevated temperature
(fi)], and phonon-phonon (anharmonic) scattering is also
assumed to be effective in maintaining a local Bose-Einstein
distribution for phonons ().

2. Energy relaxation from electron sub-system to phonon sub-
system is due to electron-phonon scattering (no other
scattering is present there).

3. Diffusion due to spatial inhomogeneities is not present.

4. Pump pulse is assumed to be a delta function in time (no
light-matter interaction after ¢ = 0%).

The evolution of the distribution functions is given by the

Bloch-Boltzmann-Peierls kinetic equations,

S o 3 M (1= SO (g + D3(ey e~ )

+ ”q‘s(sk’ — &+ hwg) | - fi(1 - fr)
x [(ng +1)0(ex — e — hwy) + ngd(ex — e + Awg)]), (14)

pubs.aip.org/aip/apq
on 27'[ 1
67: = Z Mo fre (1= fi) [ (ng + 1)8(ey — & — haog)
2 1
—ng8(ey — & +hwg) | + N Z My fie(1= o)

x [(ng +1)0(ex — & — hwg) — nq8(sk — g +hwg)]. (15)

The first equation in the above array gives the time evolution
of the thermal occupancy of electrons in the kth state. The scatter-
ing of electrons from k' state to k state and vice versa along with
the emission and absorption of phonons is written out, and the
corresponding matrix element of scattering is given by M. N, is
the number of unit cells in the sample. The energy content of the
electron sub-system and the phonon sub-system is given as

E(1) = 25 eufu(0) = Bo + . T2(0), 16)
k

El(t) = Z hquq ~ 3NakBTl(t). (17)
q

It can be easily verified that the total energy is conserved % (Ee(t) +
E;(t)) = 0. Allen introduces the electron-phonon spectral function,

oczF(s, s',Q) o< Z \Mk,kr|26(wq - 0)(ex—€)0(ep — s'), (18)

k'

where q = +(k - k’). By differentiating Eq. (16) with respect to time
and after some relabeling of dummy variables in Eqs. (14) and (15)
with some algebra,'® one obtains

dE.(t)
dt

= 27NN(er) f dQ’F(Q) (hQ) [n(Q, T)) — n(Q, T)].

' (19)
Here, n(Q, T)) and n(Q, T.) are Bose functions at lattice tempera-
ture T; and electron temperature T.. Compare the above equation
with Egs. (6) and (7) of KLT. No quadratic form of the electronic
dispersion is used. Furthermore, Allen introduces the moments of
the electron-phonon spectral function,

oo 2
A"y =2 /0 dQQ”%(Q). (20)

In the high temperature hmlt Q « 1, the main equation [Eq. (19)],

on keeping the leading order terms, leads to

dTe(t)
pn a(T; - Te). (21)
Here,
_3hMw”)
a= T (22)

This is a very important result [compare Eqs. (21) and (22) with
(12)]. The conclusion is that by doing pump-probe spectroscopy,
a very crucial parameter needed in the theory of superconductivity
Maw?) can be estimated!

It turns out that in 1990 (about three years after Allen’s work'®),
in a very crucial experimental work,'” Brorson and collaborators
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verified the predictions of Allen. The authors'’ performed system-
atic pump-probe measurements on thin films of Cu, Au, Cr, Ti, W,
etc., and estimated the electron-phonon coupling constant A using
Allen’s equation [Eq. (21)]. The agreement with other measurements
of A (such as tunneling) was excellent."”

These investigations showed that the basic assumptions in
TTM are valid, and some sort of quasi-equilibrium exists in elec-
tronic sub-system and phononic sub-system after photo excitation,
but further investigations unfolded a different story, and an apparent
paradox arose in the field.

VIl. EXPERIMENTS THAT SHOWED THAT TTM FAILS

The basic assumption of the TTM (thermalized Fermi-Dirac
distribution at an elevated temperature) makes sense when the inter-
nal relaxation time of the non-thermal electron distribution (7. - )
is much less as compared to electron-phonon relaxation time 7, _ p,
(thatis, 7, - . << 7, _ pp). Investigations in the early 1990s*"** showed
that this is not true in general. In fact, it was estimated that a non-
thermal electron distribution takes about 500 fs to relax to a hot
Fermi-Dirac distribution, whereas 7, _ 5, ~ 1 ps (in the case of poly-
crystalline gold films). Thus, instead of two sub-systems, one must
consider three sub-systems (Fig. 2).

In 1992, Fann and collaborators’ used ultrafast photo-
emission spectroscopy (instead of transient reflectance spec-
troscopy). They used 400 fs visible (1.84 eV) heating pulse to create
a non-thermal electron distribution in a gold film. For photoemis-
sion of this non-thermal distribution, they used 700 fs probe pulse.
Although time resolution was low, they observed that, for time
delays between pump (heating) pulse and probe pulse of 400 fs,
electron distribution substantially differs from a hot Fermi-Dirac
distribution (they carefully take into account density of state fac-
tors”’). These observations clearly pointed to non-thermal electron
distribution.

In another investigation by Sun and collaborators,?” a different
technique was used. They used transient reflectivity and transmissiv-
ity measurements in a pump-probe setup. The authors used 140 fs
pump pulse in low fluence limit such that the electron tempera-
ture rise was only about 20 K. In addition, the pump pulse central
wavelength was in the infrared regime so that only the intra-band
excitation of electrons around the Fermi surface was probed. The

| Non-thermal electrons
within the electron sub-system

Thermalized electrons
(at higher temperature than lattice)

Direct Coupling

Phonons

FIG. 2. Three sub-systems: (1) non-thermal (non-FD distributed electrons), (2)
thermalized electrons (FD distributed electrons) at a higher temperature, and (3)
phonon sub-system.

REVIEW pubs.aip.org/aip/apq
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1 Psec 2 psec
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FIG. 3. Signatures of non-thermal electron distribution (schematic diagram. For
original, refer to Ref. 22).

probe pulse was 210 fs, and it was in the visible regime. The observed
transient reflectivity and transmissivity showed fast rise time and
slow decay time behavior (Fig. 3).

The authors first tried to reproduce the experimental data with
the following single timescale (7 _ ,;, only) response function:

S(t) = O(¢) (e /Ty, (23)

in which instantaneous thermalization of the electron gas is
assumed, and only electron-phonon relaxation is incorporated
using single relaxation time 7,; _ . To account for the finite duration
of the pulses, the response function was convoluted with measured
pump-probe correlation function.”” The resultant graph is given
by the dotted line in Fig. 3. The agreement is very poor. Next,
the authors included in the response function the rise time for a
thermalized (hot) Fermi-Dirac distribution [that is, relaxation of a
non-thermal electron distribution to thermalized (hot) Fermi-Dirac
distribution],

S(t) = ©(1) (1 — & ) (e Tremnte, (24)

This updated response function reproduced the data very well (both
lines overlap very well, solid line in Fig. 3). From this, the authors
estimated that non-thermal electrons take about 500 fs to relax to a
thermalized electron distribution (hot Fermi-Dirac distribution).

fle)

Zero temperature Fermi-Dirac distribution

Non-thermal distribution

Thermalized distribution ———X\_ *+~

FIG. 4. Two schematic electron distributions: one is thermalized and the other is
non-thermal.
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These observations showed that the simple minded two-
temperature model is not sufficient to address the real state of affairs
in a photo excited metallic sample.

VIIl. BEYOND TTM

In a pioneering experimental investigation in 1995 by Rogier
Groeneveld and collaborators,” it is shown that electron distri-
bution after photo-excitation remains a non-thermal (non-Fermi-
Dirac) distribution on the time scale of electron-phonon relaxation.
Thus, the assumption that non-equilibrium electrons reach to an
equilibrium (hot Fermi-Dirac) distribution on a time scale much
smaller than electron-phonon relaxation is found to be invalid (at

least in the low fluence limit**). The authors used the expression
AR(t) = (at + b)AU;(t) + cAU.(2), (25)

which is based on the theory by Rosei.”* Here, AR(¢) is the change
in reflectance. Time dependence of internal energies (AU;, AU.) is
given by the approximated coupled equations,

du.(t) _ d(3yT:) dT.

O AT 4l ). 0o
d%f” _ @ . c,.ddf" —ar(T.(£) - Tu(t)).  (27)

By considering T,(0),a, b, ¢, ar, as fitting parameters, a very good fit
is obtained with experimentally determined reflectance up to 10 ps.
Initial temperature of the ions T;(0) is an experimentally known
quantity from the thermometer attached to the sample. It was found
that the fitting parameters ar, and T.(0) were largely determined by
initial relaxation (from 0.25 to 4 ps) and are decoupled from lattice
parameters (a, b, ¢).

To make a tight comparison with the predictions of TTM,
authors use its expression valid in the perturbative regime T, — T;
<« T;j (valid in the given experimental setup),

du.(t) d(iyT? dT.
dt( ) _ % YL = o (L) - D), (28)
; i T T;
40 G ¢ arro -, @9
where
NAD) o s rP i
(X(T;) = T’Ti’ f(T,) = 4goo(T/®D) A ex _ 1dx. (30)

TTM predicts that a(T;) ~ g, when T; 2 ®p. By fixing the lattice
temperature at 300 K, which is greater than Debye temperature for
gold (®p =170 K), authors determine the coefficient g_ by the
same fitting procedure. Now, one has all the information required to
use TTM. However, when the lattice temperature was fixed at 100 K,
authors found serious disagreement between the predictions of TTM
and the experiment (refer to Fig. 4 in Ref. 23). The disagreement was
seen at various fluence levels (still in the perturbative regime), and
detailed discussions were presented on this aspect.”” Authors went
further and defined “instantaneous energy relaxation time,”

Ue(o0) — Ue(O).

e(TeT) = =0 7

(31)

pubs.aip.org/aip/apq

This time scale was obtained both from the experiment and from
the TTM, and serious disagreements were found. In conclusion,
TTM is found to be invalid in the low fluence limit (perturbative
regime T, — T; << T;). We notice that these investigations raise seri-
ous doubts on the validity of TTM. Disorder effects modify the
relaxation mechanism by changing the phonon density of states and
thus electron—phonon coupling. Groeneveld and collaborators used
clean samples. Readers interested in disorder effects may refer to
Refs. 25-27.

Next, in an important theoretical investigation in 2002,”* Reth-
feld and collaborators pointed out a very curious aspect of non-
equilibrium electron relaxation in metals. They considered energy
absorption from laser field, electron-electron thermalization, and
electron-phonon thermalization, all within the full Boltzmann colli-
sion integrals approach without using any relaxation time approxi-
mation. Detailed calculations are done for the case of aluminum. The
central result of this investigation can be expressed in the following
way: For laser excitations near the damage threshold of the metal,
the energy transfer from the non-equilibrium electrons to phonons
can be expressed via the TTM, Eq. (10), even when the perturbed
electron distribution is very far from the hot Fermi-Dirac distribu-
tion! However, in the regime of low laser excitation, relaxation is not
according to TTM. It is much more delayed. It turns out that hot
Fermi-Dirac distributed electrons are much more efficient in trans-
ferring energy to lattice than non-equilibrium distributed electrons.
These theoretical and simulation results corroborate the experimen-
tal findings of Groeneveld and collaborators® in the perturbative
regime.

These investigations have a clear message: In the perturbative
regime, actual relaxation is slow as compared to that predicted by the
TTM. It implies that electrons do not reach hot thermal equilibrium
(Fermi-Dirac) distribution during the process of electron-phonon
relaxation. If one assumes hot Fermi-Dirac distribution (like in
TTM), we obtain mush faster relaxation in disagreement with the
experiments.

IX. AN APPARENT PARADOX AND ITS RESOLUTION

If TTM fails, how is it possible that the investigations of Ref. 19
lead to a reasonably accurate estimate of the superconducting para-
meter A introduced into TTM by Allen? Allen’s extension is based
on TTM.

It raises an apparent paradox! It turns out that in Ref. 19,
the experiments were done in the strong fluence limit (not in
the perturbative limit). In the strong fluence limit, the relaxation
proceeds roughly according to TTM, as discussed in Ref. 28. How-
ever, in the strong fluence limit, there is no proof that electron
distribution reaches a thermal distribution (FD distribution) on a
timescale much shorter than that of electron-phonon relaxation. So,
it seems quite surprising that the measured value of A agrees very
well with the estimated value of it (from Allen’s generalization of
TTM).

It also must be noted that—as far as the behavior of some aver-
age property of the electron gas is concerned—for a non-thermal
electron distribution excited far from equilibrium and for a cor-
responding thermal distribution (that is, with the same energy
content), the energy relaxation may be considered to follow roughly
some similar behavior. To be concrete, consider two schematic
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non-equilibrium electron distributions, one thermal and other non-
thermal (Fig. 4). In a thermal distribution, electron temperature can
be defined, but T > T, whereas in a non-thermal distribution, elec-
tron temperature cannot be defined (however, energy content can
be defined). There is more weight in the tail of the non-thermal dis-
tribution, but as far as some macroscopic parameter is concerned
(such as A introduced by Allen in TTM), the relaxation behavior of
two distributions may be considered to be similar (without affecting
the macroscopic results). However, as it stands, it is just a conjec-
ture! Rigorous proofs, both experimental and theoretical, are much
needed.

X. SUMMARY OF RELATED INVESTIGATIONS AFTER
YEAR 2000

In this section, we briefly review some of the investigations,
which attempt to address the problems of TTM and advance ideas
and theories that go beyond it.

In year 2000, Del Fatti and collaborators’ also show that
the assumption of almost instantaneous thermalization of non-
equilibrium electrons is not valid. Authors measured internal ther-
malization timescale for non-equilibrium electrons in silver films
and found it to be of the order of 350 fs. This is somewhat smaller
than that for gold films (~500 fs). This difference is ascribed to
reduced electron-electron screening in silver films as compared
to that in gold films. These experiments were also done in the
perturbative limit and corroborate the results of Lagendijk and col-
laborators* (perturbative regime is defined as T, — T <« T. Pump
fluences of tens of uJ/cm” typically lead to perturbative excitation of
electrons in metals).

Next, it turns out that laser field also modifies the
electron-phonon collision integral. In an important investiga-
tion,”” Lugovskoy and Bray take into account this very effect (also

known as the Gurzhi mechanism’!). They also underlined the role
of Umklapp electron-electron collisions. These two new inputs
better accounted the experiments of Fann et al.”””' The authors
also concluded that field modified electron-phonon scattering
rate is higher than that for electron-electron scattering. This
means that electron-electron scattering is not sufficient to establish
equilibrium within the electron sub-system during the process of
the electron-phonon relaxation.

In 2006, Carpene®” extends the TTM by incorporating the ini-
tial non-thermal electron distribution within the relaxation time
approximation. The author assumes the three temperature model
(3TM): (1) a minority of non-thermal electrons, (2) majority of hot
thermalized electrons, and (3) phonons. The non-thermal distribu-
tion (Syr) is assumed to decay via electron-electron scattering and
electron-phonon scattering considered within the Relaxation Time
Approximation (RTA),

dnr _ Onr _ Onr (32)
ot Tee  Tep

The author computes the energy transferred from non-thermal dis-
tribution to the thermal distribution. Thus, for thermal distribution
of electrons, the non-thermal term (first term on the RHS of the
above equation) acts like a heat source. Similarly, energy trans-
ferred to phonons from the non-thermal distribution (last term in
the above equation) directly acts like a heat source for phonon dis-
tribution. Considering these physical features and by incorporating
these into the original TTM, the author comes up with an updated
TTM. Extensive numerical simulations exhibit marked deviations
from TTM.

In 2017, Maldonado et al.” also considered the three tempera-
ture model (3TM) just like that considered by Carpene.”” However,
the phonon sub-system is analyzed in detail. In particular, phonon
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modes with frequency v and wave vector g are taken to be inter-
acting via phonon-phonon interactions. Mode dependent “lattice
temperature” is also defined. Phonon-phonon interactions then lead
to equilibrium in the phonon sub-system (that is, the attainment
of a single temperature for all modes). In addition, electronic and
phononic heat capacities, electron-phonon, and phonon-phonon
linewidths were calculated ab initio (using DFT). Extensive simu-
lations for the system FePt showed that lattice takes about 20 ps to
reach equilibrium! The 3TM developed by the authors gives a rea-
sonable material dependent description of relaxation phenomena in
a given material without the need of any fitting parameters.

Similarly, in the case of metal films, 3TM was introduced,*
where two sub-systems of phonons were considered. One set of
phonons remain within the film, and in the other, they cross the
film-substrate boundary depending upon the angle of incidence.
Thus, a concept of “leaky-phonons” is quite useful to study hot
electron relaxation in metal films grown on substrates.

In 2017, TTM is extended to account for slow thermalization
within the phonon sub-system in polar and non-polar semicon-
ductors.”* These calculations use electronic structure and phonon
dispersion deduced from density functional theory, which is used
as an input to the semi-classical Boltzmann equation. In these sys-
tems, electron—phonon and phonon-phonon interactions are very
heterogeneous. It turns out that thermalization within the phonon
sub-system (phonon-phonon interactions) acts like a “bottle-neck”
(a limiting step) for electron-phonon thermalization. The “bottle-
neck” effect originates because of the delay in phonon-phonon
relaxation, which further leads to delayed energy transfer from
electron sub-system to phonon sub-system. The system is most
efficient in relaxing itself when both sub-systems quickly gain equi-
librium within themselves (for more details, refer to Ref. 34).
Due to this effect, a single exponential decay of the electron-
temperature (due to electron-phonon relaxation within TTM)
changes to multi-exponential decay of electron temperature in polar
and non-polar semiconductors (due to above-mentioned heteroge-
neous interactions). This has very novel experimental consequences.
Measurement of multi-exponential decay via pump-probe spec-
troscopy can provide a handle on the nature of heterogeneity of
electron-phonon and phonon-phonon couplings and their spectral
distributions. Refer also to Ref. 35 for non-equilibrium relaxation in
semiconductors.

Very recently, Roulet and collaborators,’® using state of the
art technology of attosecond science and the method of Attosec-
ond Transient extreme ultraviolet light Absorption Spectroscopy
(ATAS), showed that time scales of relaxation of nascent electron
distribution after optical pump pulse can be measured to the finest
accuracy available today. In a basic ATAS setup (Fig. 5), a near
IR pulse of ~10fs is divided into a weak pump pulse (that is fur-
ther passed through a delay stage) and a stronger probe pulse. This
probe part is an input to High Harmonic Generation (HHG) setup
(involving argon gas). This generates a probe pulse in the XUV
spectrum, which is passed through an aluminum foil to block vis-
ible and other lower frequency radiation. Both pump and probe
pulses are combined again through a center-hole mirror and focused
on a metallic sample under study. The transmitted radiation is
send to an XUV spectrometer. For more details regarding ATAS
experiments, readers may refer to Refs. 37 and 38. Novelty of this
technique lies in the fact that at such a small time scale (below 50 fs),

36

REVIEW pubs.aip.org/aip/apq

interference (perturbation) by phonons in the mechanism of relax-
ation of non-equilibrium electrons can be neglected. It is mainly
about the electron-electron interactions. In fact, the authors, using
ATAS, show that non-equilibrium electron relaxation time scales in
Mg, Pt, Fe, and Co are of the order of 38, 15, 4.2, and 2.0 fs, respec-
tively. It turns out that relaxation time scale matches remarkably well
with the single electron lifetime given by the FLT,

% - A[(nksT.)? + B*] ~ B, (33)

Here, the coefficient A can be computed from the knowledge
of EDOS and screened electron—electron scattering matrix ele-
ment.”° From the conditions of the experiment kgT. < E, the last
approximation in the above equation follows.

It is quite counter-intuitive. Relaxation of a large number of
non-equilibrium electrons is a many-body mechanism (should not
be governed by single particle lifetime). But ATAS experiments
and simple theory’® demonstrate that relaxation can be rationalized
within the single-particle effects and the FLT. In author’s opinion,
ATAS should be applied to a wider variety of materials where FLT is
known to fail, such as strange metals. It will push the frontier in an
entirely new direction.

The crucial aspect that the author would like to underline is
this: if the electron-electron relaxation time scale is below 50 fs in
metals (as it is for the case of Mg, Pt, Fe, Co, etc., via ATAS) and
the electron—-phonon relaxation time scale is in the range of ps, then,
can one apply TTM to these systems? The answer is clearly yes! Then
what about the investigations (with low resolution in the range of
femto-seconds) of 1990s that showed TTM fails? In this author’s
opinion, all those old investigations should be re-visited with ATAS.
Another crucial question would be the following: can one justify
Allen’s program with ATAS (that is, applicability of TTM)?

Recently, TTM and its generalizations and first-principles
approaches that use the time-dependent Boltzmann equation have
been applied to other very interesting systems such as graphene. In
addition, coherent lattice dynamics and light-induced phase transi-
tions have been studied. Interested readers may refer to Ref. 39 and
to literature cited therein. A general treatment of non-equilibrium
electron relaxation in quantum materials is provided in Ref. 40.
Authors discuss relaxation due to Coulomb scattering, phonon scat-
tering, and impurity scattering using Holstein-Hubbard model, and
it is argued that clear separation of electron—-electron relaxation or
phonon-phonon scattering cannot be made. These processes run
in parallel. Another recent trend is related to ultrafast control of
quantum materials; interested readers can refer to Ref. 41.

XI. SUMMARY

The famous Two-Temperature Model (TTM) used extensively
in the investigations of energy relaxation in photo-excited systems
originated in the seminal work of Kaganov, Lifshitz, and Tanatarov
(KLT) in 1957. Then, in 1974, Anisimov, Kapeliovich, and Perel’'man
pointed out that with an ultrashort laser pulse, a non-equilibrium
state of electrons in metals can be created in which electron temper-
ature is much greater than lattice temperature. This field experiences
great developments in the 1980s and 1990s with the advent of femto-
second (fs) pump-probe spectroscopy. The first experimental proof
of this preferential heating of electrons (“anomalous heating” as it
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was then known) after photo-excitation was provided by Fujimoto,
Liu, Ippen, and Bloembergen in 1984. In 1987, Allen revisits the cal-
culations of KLT and rewrites the electron-phonon heat transfer
coefficient & in terms of a very important parameter in the theory
of superconductivity (1{w?)). This has far-reaching consequences.
Doing a pump-probe experiment, A for a given superconducting
material can be estimated. However, as will be discussed in PART
II of this review, the interpretation in the case of unconventional
superconductors (such as cuprates) is non-trivial.

In the early 1990s, it became very clear that the basic assump-
tions of the TTM fail (internal relaxation time of the non-
thermal electron distribution 7._. is not short as compared to
electron—-phonon relaxation time 7, _ p, that is, 7. - e << 7, _p). The
first experimental proof of the non-equilibrium state of electrons
(non-Fermi-Dirac distribution) was provided by several investiga-
tors, including Fann and Sun and their collaborators. From year
2000 and onward, focus has shifted from non-equilibrium phenom-
ena in simple metals to those in strongly correlated systems such as
high Tc cuprate superconductors and other unconventional super-
conductors. Very recently, with the advent of ATAS, we may be
witnessing the coming back of TTM. But more investigations are
needed. Some of the pressing issues are as follows: Why do, in the
low fluence limit (T, — T <« T), experiments violate the predictions
of the TTM? What are the roles played by the long wavelength exci-
tations in the electron gas (like plasmons). Other issues include the
use of ATAS in the study of time evolution of the effect of exchange
interactions (at attosecond and femtosecond time scales) for mag-
netic metals near their critical points, and ATAS should be used to
check whether FLT is violated in strange metals at the initial stages
of non-equilibrium electron relaxation.
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ABSTRACT

The quantum Rabi model (QRM), composed of a qubit interacting with a quantized photonic field, is a cornerstone of quantum optics. The
QRM with dominant unitary dynamics has been demonstrated in circuit quantum electrodynamics (QED) systems, but an open QRM with
a strong photonic dissipation has not been experimentally explored. We here present the first experimental demonstration of such an open
system in circuit QED, featuring a controlled competition between the coherent qubit-field interaction and the photonic dissipation. We map
out the photon number distributions of the dissipative resonator for different coupling strengths in the steady state. We further observe the
variation of the photon number during the system’s evolution toward the steady state with fixed control parameters. The results demonstrate
that the system’s behavior is significantly modified by photonic dissipation.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0276914

The Quantum Rabi model (QRM), which describes the interac-
tion between a qubit and a quantized field mode, lies at the heart of
quantum optics.” It reduces to the well-known Jaynes-Cummings
model JCM)™* in the rotating-wave approximation, which is valid
when the qubit-photon interaction strength is much smaller than
the frequency scale. When the coupling is comparable to the fre-
quencies, the counter-rotating wave terms play a non-negligible role,
resulting in a competition between the photonic creation and anni-
hilation associated with the excitation or deexcitation of the qubit.
This competition gives rise to the emergence of a cat-like state, where
two coherent states of the field with opposite phases are entangled
with the qubit’s energy levels.” ~ More intriguingly, it can exhibit
a superradiant phase transition,” " featuring a sharp increase in
the photon number near the critical point. In addition to funda-
mental interest, the associated critical phenomena are useful for
enhancement of the sensitivity in quantum metrology."” '

Over the past few years, both the spectroscopic signatures' "
and dynamical behaviors of the QRM have been experimentally

explored in different systems.'""'>'"~*' In most of these experiments,

the qubit-photon coupling strength is much stronger than the sys-
tem dissipation, so that the system evolution is dominated by the
coherent dynamics. When the photonic decaying rate is comparable
with the interaction strength, the system may display new effects,
e.g., the dissipative phase transition.””” Recently, the dissipative
QRM was demonstrated in an ion-trap experiment,”* where the
phononic mode of a trapped ion, which was coupled to its electronic
degree of freedom and subjected to an artificially engineered reser-
voir, mimicked the photonic mode of the original QRM. However,
the open QRM with a naturally dissipative photonic mode has not
been reported so far.

We here present a demonstration of such a dissipative QRM
in a circuit quantum electrodynamics architecture, where a super-
conducting qubit is coupled to the microwave field stored in a lossy
microwave resonator by an ac flux, which periodically modulates the
qubit’s frequency. This frequency modulation mediates a sideband
interaction between the qubit and the resonator, with a controllable
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photonic swapping rate. A transverse drive transforms this JCM into
a QRM with a non-negligible photonic dissipation rate. We investi-
gate the photon-number distributions and average photon numbers
for different effective coupling strengths after a long-time dynamics.
We further track the system’s evolution for fixed parameters. The
results demonstrate that in each case, the photon number evolves
toward a steady value without oscillations, in contrast to the unitary
dynamics.

The dissipative QRM [intuitively seen in Fig. 1(a)] dynamics
can be described by the master equation (% = 1 hereafter, and the
decoherence of the qubit is ignored)

. . K
p = —i[HRapi> p] + KapaT - E(aTap +paTa), (1)

where p is the density matrix, a (a') is the annihilation (creation)
operator of the dissipative cavity mode with decay rate «, and Hgab;
is the QRM Hamiltonian

Q
Hpabi = an +0ata+ nox(a+ aT), (2)

with effective frequencies Q) and ¢ of the qubit and cavity, respec-
tively. Note that oy, are the Pauli operators of the qubit under
the ground and excited states basis {|g), |e)}, and 0, can be
treated as o, here, after a simple representation transformation (see
supplementary material, Sec. S1, for the details). A distinct feature
of the current model is that the cavity decay rate x = 5 MHz is close
to the coupling strength # ~ 2w x 1 MHz, resulting in a competi-
tion between the coherent QRM dynamics and incoherent photonic
dissipation, further leading to a steady state with a stable pho-
ton number (see supplementary material, Sec. S2, for the detailed
numerical simulation of system dynamics).

The experiment is carried out on an on-chip superconducting
circuit,”” where the lowest two energy levels of an Xmon constitute
the qubit, while a lossy microwave resonator acts as the dissipative

) \@ (b) ——lmm
o)
/ \9 jss)] Ve

¢

FIG. 1. Experimental setup diagram. (a) Schematic diagram of the dissipative
QRM, including a two-level artificial atom coupling to the field mode stored in a
dissipative cavity (decay rate x ~ #). (b) On-chip demonstration of the dissipa-
tive QRM: optical micrograph of the superconducting circuit. The Xmon qubit is
capacitively coupled to a dissipative resonator and an XY control line [o,], and
inductively coupled to a Z control line (o). In addition to the dissipative resonator,
the qubit is controllably coupled to a bus resonator with a negligible dissipation rate
(not shown here), which is used to bring the qubit to the ground state after the dis-
sipative quantum Rabi dynamics, necessary for reading out the photon number of
the dissipative resonator.

ARTICLE pubs.aip.org/aip/apq

cavity [see Fig. 1(b)]. Typically, this dissipative resonator is used
to measure the qubit population through dispersive interaction; "’
therefore, with frequency w,/(27) = 6.656 GHz, it is much higher
than the qubit frequency wy/(27) = 5.93-5.996 GHz. We utilize
Floquet technology to couple the qubit and resonator at the first
sideband. Specifically, a periodical modulation, € cos(v1t), is applied
through the Z line of the qubit [see Fig. 1(b)], resulting in a series
of frequency splittings. We adjust v; = w, — w, to resonate the qubit
and resonator at the first sideband with strength # = AJ, (¢/v1)/2
[J,1(+) the first kind Bessel function at the first order], where A is the
original interaction strength between the qubit and resonator. Fur-
thermore, a transverse drive from the XY control line [see Fig. 1(b)],
Q1 +iQzexp(ivat), transforms the JCM to the QRM in Eq. (2)
when v, = 20,Jy(e/v1), with the effective frequency of resonator
Q2 = Qy]y(e/v1)/2 (see supplementary material, Sec. S1, for the
deviation). By adjusting € and v;, we can gradually change the value
of #/(2m) from 0 to 1 MHz with fixed frequencies of the qubit and
resonator /(27) = 1 MHz and w/(27) = 0.18 MHz. We first check
the population oscillations of the dissipative QRM, realized with
the choice ¢/(27) = 56.7 MHz, v1/(27) = 708.7 MHz, Q. /(27) = 20
MHz, and Q,/(27) = 1 MHz, corresponding to #/(27) = 0.8 MHz.

The system starts from the ground state |g), ®|0), (qubit’s
ground state and resonator’s vacuum state). After a preset interac-
tion time, both the longitudinal modulation and transverse driving
are switched off so that the qubit is effectively decoupled from the
dissipative resonator, as their detuning (w, — wy)/(27) ~ 700 MHz
is much larger than the coupling strength A/(27) = 40 MHz. Then
the qubit’s state can be read out. Figure 2 displays the measured pop-
ulation of the qubit’s excited state. We note that the fast oscillations,
with the period of about 27/[2Q1]y(e/v1)] = 25 ns, are due to the
transverse driving. In other words, the dissipative Rabi model is real-
ized in the rotating framework at the frequency 2Q1J,(¢/v1),"* but
the results are measured in the laboratory framework. Consequently,
the envelopes of these oscillations reflect the qubit dynamics of the
effective dissipative QRM.?! The upper and lower envelopes (solid

I ,'\ - - - ‘ideal dissipative QRM
08 ,l l’\‘: Ity e Experimental data
O b 34 n
g r Il l' Lokl ‘e \
~ [ I A %
= 0.6, :. NI ,: © ".‘ " A
2o T e A ]
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T [N A
SN
0.2 "‘ 3
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Time (ns)

FIG. 2. Observation of the |e)-state population evolution of the qubit. The effec-
tive dissipative Rabi model is realized for #/(27) = 0.8, w/(27) = 0.18, and
Q/(2r) = 0.5 MHz. The system starts with the ground state. The lines and dots
denote the numerical result for the ideal dissipative QRM [considering the trans-
verse field rotating 2Q4Jy(¢/v1)0x] and the experimental result, respectively.
The solid purple and black lines denote the lower and upper envelopes of the
observed fast oscillations, respectively. These envelopes, respectively, starting
from the qubit's ground and excited states, are in good agreement with the qubit
dynamics of the effective dissipative QRM with the corresponding initial states
(dashed—dotted lines).
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lines) coincide with the qubit excitation-number evolutions, start-
ing from the initial excited and ground states, respectively. These
agreements confirm the validity of the engineered dissipative QRM.
During the first several oscillatory periods, the experimental results
are in good agreement with the simulation (line), confirming the
validity of the approximations for deriving the effective dissipative
QRM. With the elapse of time, the qubit becomes more and more
affected by dephasing noise, which destroys the oscillatory signals
but is not included in the effective model.

The photon number of the dissipative resonator is measured
with the help of the qubit. To do so, it is necessary to first transfer
the excitation of the qubit to the bus resonator through a swapping
gate at the frequency of the bus resonator. Following this excitation
transfer, the qubit is biased back to the original frequency, where a
longitudinal modulation is applied to mediate a resonant sideband
interaction with the dissipative resonator, described by a dissipa-
tive JCM. The photon number distributions can be inferred from
the Rabi signals of the qubit. Figures 3(a) and 3(b), respectively, dis-
play the photon number distributions for #/(27) = 0.8 and 0.9 MHz,
measured after a 3-uys dynamics of the dissipative QRM with the
initial state (|g)q + |e)q) ® |0)c/\/2. The results imply that the popu-
lations of relatively large photon numbers increase with the effective
coupling strength. For example, when #/(27) = 0.8 MHz, the total
population with three or more photons is 0.2684, which increases to
0.4044 for 5/(27) = 0.9 MHz.

Pushing one step further, we investigate the average photon
number in the steady state of the dissipative QRM vs the effective
coupling strength 7. Figure 4(a) displays the results, all measured for
the initial state (|g)q + e)q) ® |0)c/+/2, which evolves according to
the dissipative QRM for an interaction time of 3 us. As expected,
with the increase of #, the average photon number monotonously
increases. These experimental results coincide with the simulation

(@)
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o
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FIG. 3. Observed photon number distributions for #/(27) = 0.8 MHz (a) and
0.9 MHz (b). For each case, the photon number distribution is obtained after dissi-
pative QRM dynamics lasting for 3 us. The result is measured with the qubit, whose
excitation is transferred to the bus resonator after the quantum Rabi dynamics, fol-
lowing which it is coupled to the dissipative resonator to extract the photon-number
populations. In (a), the measured N-photon populations for N = 0 to 8 are 0.4348,
0.1566, 0.1401, 0.0511, 0.1170, 0.0292, 0.0263, 0.0236, and 0.0213, respectively.
In (b), the corresponding populations are 0.3629, 0.1460, 0.0866, 0.0898, 0.1156,
0.0579, 0.0521, 0.0469, and 0.0422, respectively.
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FIG. 4. Observation of the dissipative QRM dynamics. (a) Photon number n vs
the QRM coupling 7/(27). Each data point is measured at { = 3 us under the
dissipative QRM dynamics with corresponding coupling #/(27). (b) The variation
of the photon number n during the dissipative QRM system’s evolution toward the
steady state with fixed coupling 7/ (27).

(lines) very well. To confirm the system has well approached the
steady state after 3 us, we track the photon number evolutions within
3 ps. Figure 4(b) shows the photon number evolutions observed for
different values of #. As expected, for each case the photon number
almost remains unchanged from 2 to 3 us, where the average growth
rates of the photon number are 0.0033, 0.0056, 0.0116, 0.0113, and
0.0088 us™" for n/(27) = 0.2,0.4,0.6, 0.8, and 1.0 MHz, respectively.
This proves that the cavity dissipation (with rate ¥ = 5 MHz) plays an
important role in the dynamics, making the system tend to a steady
state, in stark contrast with the oscillatory pattern exhibited by the
unitary QRM under the time-independent Hamiltonian. The results
also demonstrate that the closer n/(27) is to 1 MHz, the larger
the changing rate of the steady-state photon number with respect
to 1. Due to the limitation of system parameters, the QRM is real-
ized with an effective frequency ratio of 5.6. With the improvement
of this ratio, it is possible to observe the dissipative superradiant
phase transition, which was predicted to occur at the critical point

& =/1+x*/(48%)** when this ratio approaches infinity.
PP y

In conclusion, we have demonstrated the dynamics of the dis-
sipative QRM engineered with a frequency-tunable Xmon qubit,
together with its readout resonator. The qubit-resonator interaction
is mediated at the first upper sideband with respect to a frequency
modulation applied to the qubit, which makes the photonic swap-
ping rate tunable. Thanks to this tunability, a transverse microwave
drive transforms this JCM into a QRM, with a strong photonic
dissipation, in a rotated framework. The effective qubit frequency
in the QRM is controlled by the amplitude of a second transverse
drive. The observed evolution of the qubit excited state popula-
tion shows fast oscillations, with the envelopes well agreeing with
the qubit dynamics in the effective dissipative QRM. The photon
number distribution of the resonator after a preset interaction time
is extracted by re-initiating the sideband interaction and record-
ing the Rabi signal, governed by dissipative JCM. The observed
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average photon number monotonically increases with the effective
coupling-frequency ratio, tending toward a steady value after a long-
time dynamics, which makes the dissipative QRM different from
the unitary counterpart. The method can be extended to synthe-
size a dissipative Dicke model involving multiple qubits coupled to a
decaying resonator, with a controllable effective coupling-frequency
ratio. We plan to investigate the dissipative superradiant phase
transition in such a model.

The supplementary material includes the engineering of the
Rabi model with controlled unitary-dissipative competition, simu-
lation of the system dynamics, realization of the quench process,
observation of the photon number evolution during the quench
process, and steady-state photon-number distributions.
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ABSTRACT

We investigate the quantum dissipative dynamics near the stable states (attractors) of a driven Duffing oscillator. A refined perturbation theory
that can treat two perturbative parameters with different orders is developed to calculate the quantum properties of the Duffing oscillator
near the attractors. We obtain the perturbative analytical results that go beyond the standard linearization approach for the renormalized
level spacings, the orbital displacements, and the effective temperature near the classical attractor. Furthermore, we demonstrate that strong
damping induces additional slight renormalization of level spacings and the Bose distribution together with dephasing. Our work provides
new insights into the quantum dynamics of the driven Duffing oscillator and offers a theoretical framework that can be applied to related
quantum systems near their stable states.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0267128

. INTRODUCTION

The driven Duffing oscillator,' a paradigmatic model for var-
ious nonlinear mechanical systems and nonlinear optical phe-
nomena, has fascinated physicists for a long time with its rich
dynamical behaviors such as bistability, bifurcation, and chaotic
trajectories. In recent years, the Duffing oscillator has received
renewed attention, as the quantum regime of nanomechanical oscil-
lators becomes experimentally accessible. The interplay between
quantum effects, nonequilibrium dynamics, and nonlinear effects
makes the driven Duffing oscillator a model with broad applicabil-
ity across multiple domains, e.g., mechanical metrology,” chaotic
dynamics,”” cavity and circuit quantum electrodynamics,” "' nano-
and opto-mechanics,”” > and cold atoms.”” *’ Notable examples
include bifurcation-based quantum measurement devices, where
the low- and high-amplitude states of bistability are entangled
with the ground and excited states of qubits, respectively, enabling
the analysis of the qubit states through the detection of classical
signals.” "’

In practice, physical systems inevitably interact with their
environment, leading to the decoherence of quantum states and

dissipation of energy. The dissipative dynamics of driven Duffing
oscillators have been extensively studied.”"”* In the underdamped
regime near a bifurcation point, a scaling law for the noise-induced
escape from metastable states was established.” To the bottom of
the well in a parametrically driven Duffing oscillator, it was iden-
tified that the energy dependence of the level spacings captured by
the perturbative approach beyond linearization gives rise to a fine
structure in the power spectrum.’* It was also revealed that the
quantum activation process has distinct temperature dependency
compared to that for the quantum tunneling process.”” The dis-
tinct transition rate scaling behaviors near bifurcation points were
also revealed in the driven mesoscopic Duffing oscillator.” It was
found that the bifurcation point is shifted by the quantum effect and
a linear scaling behavior for the tunneling rate with the driving dis-
tance to the shifted bifurcation point.”” Recent advances also showed
that the quadrature squeezing can enhance the Wigner negativity in
a Duffing oscillator, demonstrating a promising approach to gen-
erate nonclassical states in macroscopic mechanical systems.’® For
two Duffing oscillators coupled via nonlinear interactions, the sta-
tionary paired solutions and their dynamical stability were demon-
strated.'® In a coupled system consisting of a time-delayed Duffing
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oscillator (as a driver system) and a non-delayed Duffing oscillator
(as a response system), the phenomenon of transmitted resonance
was investigated.”

In this paper, we focus on investigating quantum dissipative
dynamics near the attractors of a driven Duffing oscillator. We
develop an effective quantum master equation that can address
quantum fluctuations, thermal effects, damping, and dephasing in
a unified framework. Our approach is essential to quantify the
occupation of high levels near the bottom of the potential well by
the quantum squeezing effects. We also demonstrate the effects of
strong damping and dephasing on the system’s dynamics, including
level spacing renormalization and dephasing-modified Bose distri-
butions. While prior studies within linearized frameworks have suc-
cessfully captured phenomena such as effective temperatures,”***"'
the refined perturbation theory presented in our work goes beyond
the standard linearization approach, allowing us to investigate
the energy dependence of the level spacing, the orbital displace-
ment, and the effective temperature. To address this, we develop
a refined perturbation theory capable of treating two perturba-
tive parameters with distinct orders, enabling a unified analysis of
nonlinear and dissipative quantum effects near the attractors. By
comparing our theoretical predictions with exact numerical simu-
lations, we demonstrate the accuracy and utility of our proposed
framework.

Il. GENERAL THEORY
A. Model Hamiltonian

An extensive class of macroscopic physical systems, such as
Josephson junctions and nanomechanical oscillators can be modeled
by the Duffing oscillator in the presence of a periodic driving force,
with the system Hamiltonian described by**

2

Hs(t) = 57" + %mﬂzxz —yx* + F(t)x. (1)

Here, parameter m (Q) describes the mass (frequency) of the
oscillator, y gives the nonlinearity of the Duffing oscillator, and
F(t) = Fo(e™ + ™) describes the periodical driving force with fre-
quency v. By switching to the rotating frame using the transforma-
tion U(t) = exp(—iva'at) with a' (a) being the raising (lowering)

pubs.aip.org/aip/apq

operator and applying the rotating wave approximation (RWA), we
obtain a time-independent Hamiltonian,

H=(8w+y)a'a+y(a'a)* +e(a +a). (2)

Here, parameter dw=h(Q-v) is the frequency detuning,
y = =3y 2(mQ)* is the scaled dimensionless nonlinearity, and
€ = Fo/h/2mQ is the scaled driving strength. We then introduce
the position operator Q and momentum operator P in the rotating

frame via
Q=\/§(af+a), P=i\/§(uT—a), (3)

which satisfy the commutation relation
[QP] =il 4)

Here, the parameter A = —x/(4A) is the dimensionless Planck con-
stant that describes the quantumness of the system, i.e., the value of
A increases as the system approaches the quantum regime. Substi-
tuting operators Q and P back into the RWA Hamiltonian (2), we
obtain

1 1 1 A
Hia=~(g+>)-=+%, 5
/2=3 (g ! 4) 271 ©)
where g is the quasienergy, given by

g=-(Q+P -1)’/a+ \/pQ (6)

Here, the parameter 8 = —f*y/(2A%) is the scaled driving strength.
Note that Eq. (6) is valid only for the soft nonlinearity y > 0.
For the hard nonlinearity y <0, the quasienergy is given by

g=(Q@+P-1)*/4-/pQ

B. Renormalized master equation

The characteristic behavior of the driven Duffing system is the
bistability manifesting as two stable states: the low-amplitude state
(LAS) and the high-amplitude state (HAS). As depicted in Fig. 1(a),
these stable states correspond to the extrema in the quasienergy
landscape, which are defined as the attractors in the phase space. The
unstable state, known as the saddle point, is located on the separa-
trix, serving as the boundary dividing the basins of the attractors.

s s s

FIG. 1. (a) Quasienergy landscape in phase space of a
driven Duffing oscillator. The extrema correspond to the
high-amplitude stable state (M) and the low-amplitude sta-
ble state (m), while the saddle point (s) marks an unstable
state. (b) Cross section of the quasienergy potential at
P = 0. Quantum energy levels close to the maximum (M)
and minimum (m) of the potential are depicted by blue and
red lines, respectively. The unstable saddle point (s) is also
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When the damping is present, the system evolves toward the nearby
attractor if its initial state lies within the basin of the attractor. How-
ever, due to thermal noise, the system does not remain exactly on
the attractor but forms a probability distribution within its basin of
attraction. To describe the dissipative dynamics of our system, we
employ the Lindblad form master equation,

% - —i[H,p] + g{(l +71)Dlalp+aD[a']p}, )

where D[e] is the Lindblad operator defined as D[A]p = 24pAT
~ ATAp —pATA, 71 is the Bose-Einstein distribution, and « is the
damping strength.

To study the quantum dynamics near the bottom of each stable
state, we first transform the system to the center of the attractor using
the displacement operator,

D[a] = ¢* e (®)

with parameter a being a complex number. By defining the displaced
density matrix p = D[a]"pD[a], we obtain the following master
equation:

% = ~i{f.p]+ S{(1+#)Dlalp + #D[a']p} + [&a - aa',p],
©

with & = [1x+i(6w + x + 2y|a*)]a + ie. By choosing « such that
& = 0, the master equation is simplified into

dp ~ .1 K _ I 94

o - [Hpl+ A+ a)Dlalp+aDla'lp}, (1)
with the renormalized Hamiltonian H given by

H= (0w +4ylaf)a’a+ y(a'a)? + y(a*a® + a*a'?)
+2x(ocafza+a*a1ta2). (11)

We then introduce the squeezing operator

S(E) — e(f*ﬂz—f“T )/2) (12)

which has the transformation property STaS = va+ua' with

v = cosh(|¢]) and u = —L? sinh (|¢]). By defining the squeezed den-

sity operator p = SpS, we transform the master equation of Eq. (10)
into the following form:
P if,p)+ £{(1+ ) Dlalp + NDa'Jp}
+ gM(ZanaT —a’p—pa)
+ gM*(Zapa—azp—paz)—i[faTZJré*az,p], (13)
where N = afv]* + (1 + 72)|u* is the effective Bose distribution and

M = uv* (27 + 1) is the squeezing number. The parameter & in the
last term of Eq. (13) is given by

&= [0w + 4xlal” + 2x2Ju)* + |v[) v u +X(oc*2u2 +atv*?

pubs.aip.org/aip/apq

By setting & = 0, the renormalized master equation (13) is further
simplified into

P -i{i1.p)+ £{(1 + N)Dlalp+ NDla'Ip)

+ gM(ZaT[)aT —ap—pa'’) + gM*(Zapa - ap - pdd).
(14)

The final renormalized Hamiltonian H becomes
H=dwa'a+j(a'a) + 2)(ST(aaT2a +a*a’a®)S+xF, (15)

with F = 2 + |uf?) (v uaa + vu*a’a®) + @ u)*a™ + (u*v)?a’.
The renormalized detuning d@ and nonlinearity y are given by

dw/dw = (1 -4 ) ([v]* + |u]*)
20 2luv + ul* + o Pu + dPutv*), (16)

1/ 0w = —/1(|u|4 + |v|4 + 4|uv|2),

with the displacement parameter o and the squeezing parameters u
and v satisfying the following steady equations:

5 g ae®)]e-in /B
0 = [2&0 +i(1-A-2A|q] )]a VeSS
0 = [1-4A|a” - A(4]ul* +2v])]v*u

*2 2 2 %2
“AMau+a’vT).

(17)

Here, we have introduced the dimensionless driving strength

B =2)(e/dw)*.

C. Orders of perturbative parameters

To perform perturbation calculations for the renormalized
Hamiltonian (15), we can choose the dimensionless Planck constant
A = —x/(4A) as the natural choice for the perturbation parameter.
However, since the displacement parameter « is also a function of A,
it is subtle to properly organize the perturbative terms according to
their respective orders. In fact, the Hamiltonian (15) should be writ-
ten in different forms for different attractors. The stable state of the
driven Duffing oscillator can be approximated as a coherent state
|oe). By applying the variational principle in quantum mechanics,
i.e., Oa{a|H|a) = 0, we obtain two solutions for the steady coherent
number: a smaller one |a;|* ~ /(21) for the LAS and a larger one
lan|* ~ 1/(2)) for the HAS.

For the LAS, we sort the terms in the renormalized Hamiltonian
(15) as follows:

Hl
" ho + Ay + Bhy +\/ABhj, (18)
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where the four terms on the right-hand side are given by

Wy = (] + uP)ata, B =-2uv +|u|*)a'a
= (Jul* + |v|* + 4|uv]) (a'a)* - F,

19
hlz_l Ao + [uf?) + 120 uv + 20 v*)]ala, (19)
Pp

hil; =-2/A/B ST(oclaJrzu +ajala’)s.

Together with Eq. (17), we can now perform perturbative calcu-
lations near the bottom of the LAS. Given that the dimensionless
driving strength f3 is also small, we consider the sum of the last three
terms in the Hamiltonian of Eq. (18) as the perturbation term and
calculate the desired quantities perturbatively.

For the HAS, as the coherent number |ay|* ~ 1/(21) can be
significantly large for A « 1, a more careful sorting of the terms in
the renormalized Hamiltonian of Eq. (15) is needed, along with the
steady-state condition in Eq. (17), to ensure that terms of the same
order are kept together. We introduce y = /A as the perturbation
parameter and rewrite the Hamiltonian as

Frh
’;7) = hi + yhi + yhb, (20)

where the three terms on the right-hand side are
hy = [(1 - M) (Jof + [uf’) = 22 (ei v + au*v*) Ja'a,
h}f =V st (Zahanza + ZaZaTaz +apa’ + a,a)S,

Wi = —220uv) + [u[*)a'a - (|ul* + [v]* + 4|uv]*) (a"a)?

21)

—F=202Juf* + o) (v ua' + u*va®).

To handle the perturbation orders coherently, we have rearranged
the perturbation terms by removing those of order A from the steady
condition of Eq. (17) and incorporating them into the renormalized
Hamiltonian. The coherent number «;, and u and v for the HAS are
now determined by the revised steady condition

K 2 _ B
[28w+z(1 2M o] )]ah 5 0,

(1 - 4oz v u —/\(tx;:zuz + (xf,v*z) =0.

The behavior near the bottom of the LAS is relatively simple
and can be modeled using a harmonic oscillator. However, for the
HAS, the nonlinear term y(a'a)? ~ y|a;|* becomes prominent, and
the oscillator behaves as a highly squeezed coherent state. In Secs.
[T A and I1I B, we will apply our perturbative method to calculate the
crucial quantities related to the HAS of the driven Duffing oscillator,
namely, the level spacings, the orbital displacement, and the effective
temperature in the vicinity of the HAS attractor.

lll. RESULTS
A. Quantum dynamics of HAS

The quantum dynamics of the driven Duffing oscillator near
the HAS attractor exhibit a rich interplay among nonlinearity, quan-
tum fluctuations, and thermal noise. In this section, we discuss
the quantum properties of the HAS using the renormalized master
equation combined with a refined perturbation theory.

ARTICLE pubs.aip.org/aip/apq

1. Level spacing

The nonlinear term y(a'a)” in the Hamiltonian, having the
opposite sign to dw, results in a decrease in the level spacing
AE, = |Ess1 — En| as we approach the saddle point, as illustrated in
Fig. 1(b). One can calculate the level spacings with standard per-
turbation theory by treating the sum of yh! and yh% in Eq. (20) as
one perturbation term. However, it becomes a challenge to control
the accuracy of the level spacings using the perturbative parameter.
We find it necessary to distinguish between these two perturba-
tive terms in the perturbation calculations to accurately determine
the level spacing. To address this, we have developed a double per-
turbation theory framework that is particularly suited for the HAS
Hamiltonian containing second-order small terms; see the details in
Appendix A.

In Fig. 2, we compare our perturbation calculations with
the exact numerical results obtained by diagonalizing the original
Hamiltonian of Eq. (2). These results show an excellent agreement
for energy levels near the bottom of the potential well. Under the
zeroth-order perturbation approximation, the energy level spacing
remains constant across all levels, similar to that of the harmonic
oscillator. The second-order and fourth-order corrections provide
accuracies up to y* = A and y* = A2, respectively. Higher-order per-
turbation calculations become necessary for levels farther from the
bottom.

2. Orbital displacement

We denote the eigenstate of the renormalized Hamiltonian H as
|n'), which is generally a superposition of harmonic oscillator eigen-
states |n') = |n) + Xy, £xulk), Where the superposition coefficients
&, are provided in Appendix A. The eigenstate |[N) of the original
Hamiltonian (2) is related to that of the renormalized Hamiltonian

0.70
0.60
3 ]
S i
\g 4
0.50
R ]
4 i
] ——4th order
0'40'_ 2nd order
_ ——0th order
E Num.
0.30
T T T T T
0 10 20 30 40 50

n

FIG. 2. Comparison of perturbation calculations and exact results for energy level
spacing. The exact results (lowest curve) for level spacing AE, = |Epy1 — En|
are compared with the zeroth-order (constant spacing), the second-order (second
highest line, 3% = 1) and the fourth-order (third highest line, y* = A?) corrections.
Excellent agreement is observed for low-level numbers near the potential well bot-
tom, while higher-order corrections are required for large n. Parameters: A = 0.016
and 8 = 4/75.
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-2 2nd order
— 3rd order
=
S
=,
=4
-5
-6

0 5 10 15 20 25 30 35 40
N

FIG. 3. Orbital displacement. The average position (N|a|N) of the energy level N
illustrates the shift due to the quantum fluctuation. Under the harmonic approxima-
tion, (N|a|N) is a constant for every level (lowest line). Considering higher-order
corrections, we observe changes in (N|a|N) across levels. Compared with the
second-order perturbation result (highest line), the third-order result (second
highest line) already aligns well with the exact one (bold line).

(15) via the relationship |[N) = DS|n’). The matrix element (N|a|M)
for different levels [N) and |[M) is then given by

(Nl|a|M) = (n'|S"D'aDS|m’) = (n'|(va + u' + a)|m")

= v(n'|a|m’) + u(m'|aln’)* + a(n'|m"). (22)

The matrix element (N|a|N) provides insight into the orbital dis-
placement in the phase space. Under the harmonic approximation
(&4, = 0), (N]a|N) remains a constant « for all levels. However, con-
sidering higher-order corrections, the orbital displacement (N|a|N)
changes with the energy level, as depicted in Fig. 3. The perturbation
results agree well with numerical calculations.

3. Effective temperature

Next, we calculate the stationary distribution over the levels of
the HAS and the effective temperature near the bottom. It is impor-
tant to note that the annihilation operator a is for the Fock state
|N), which decreases the Fock state from a higher level to the next
lower level a|N) = /N|N — 1). However, in our case, the eigenstate
of quasienergy |n) is the superposition of Fock states |[N). As a result,
the annihilation operator a can either decrease or increase the state
|n) even at zero temperature.

Under the assumption of weak damping (x << E, — E4+1), the
off-diagonal matrix elements on the state |n) are very small. Thus,
we can only keep the diagonal elements. Here, we assume that the
stationary density matrix is diagonal and denote the diagonal terms
as p,, = (n'|p|n"). The master equation (15) can be simplified into a
balance equation,*

dp.
% = KZ (Wn’,m’pm’ - Wm’,n’pn’)’ (23)

m

ARTICLE pubs.aip.org/aip/apq

where the transition rate from level |m’) to level |n') (m" #n") is
given by

W = M(m'la|n’)" (n'|a|m")" + M (m|a|n")(n'|a|m")
+ (1+N)|(a|a|m" ) + N|(m'|a|n’) . (24)

One can prove that the transition rate W, for n’ # m’ is equal to
|(N|a|M)|? calculated above in Eq. (22).

As can be seen from the above rate equation, even at zero
temperature, the oscillator can make transitions to both lower and
higher energy levels. In Fig. 4, we compare the stationary distri-
bution obtained using our double perturbation theory with exact
numerical results. To the lowest order, all superposition coefficients
are zero. To the first order of VA (ie., &, = \/Xflsnl)), there is no
correction to the stationary distribution p,,. Then, to the second

order (i.e., &, = \/XE,E’? + /\E,Sj)), we solve the balance equation (23)
accordingly. Figure 4(b) illustrates the relative error Ap, /p, in com-
parison with the exact numerical results, which shows that the
discrepancy for low levels is mitigated by high-order perturbative
calculations.

In the vicinity of the bottom, we can apply the harmonic
approximation (&, =0). Under this approximation, the ratio of
probabilities over adjacent levels is

Pw i1 _ Wn'+l,n' _ N_ _ Fl|v|2 + (1 + fl)|u|2
pw Wywa 1+N L+afof+ (1 +a)u*

(25)

We verify the relationship between In(p, /p,) and the Bose distribu-
tion 7 in Fig. 5. The agreement between the analytical results from
Eq. (25) and the exact numerical one is excellent.

For high levels, we can define the level-dependent effective
temperature via

Ny (n) = pust/(Pn = pr+1)

0
-10 4
-20 4
< i
A 30 N
=] ] um.
= 07 ——Oth order
'50'_ 2nd order
w0 (@)
T T T T T
0 10 20 30 40 50
0.2
o 00
A ]
\: 0.2
AL 041
4 i = (Oth order
0.6 2nd order
1 (b)
0.8
T T T T T
0 10 20 30 40 50

FIG. 4. Comparison of stationary probability distributions. (a) Comparison of the
stationary probability distribution obtained through perturbation theory to zeroth-
order (red line), second-order (blue line), and exact numerical simulations (black
line). (b) Relative error Ap,/p, in the stationary distribution obtained from pertur-
bation theory compared to numerical results. The discrepancy increases for higher
levels but remains less than 1.
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FIG. 5. Ratio of probabilities for the lowest levels in (a) the LAS and (b) HAS,
plotted as a function of the Bose distribution /1. The agreement between the ana-
Iytical results (black square dots) and the exact numerical results (red circle dots)
is excellent.

for level |n). Figure 6 illustrates how N varies from the lowest to
higher levels. The zero-order term yields a constant effective tem-
perature. When we include the correction up to the order of A, the
correction leads to changes in N, showing a good agreement with
the numerical results for levels near the bottom.

B. Strong damping and dephasing

In this section, we explore the dynamics and the stationary
state of the system under conditions of strong damping and dephas-
ing, which can significantly alter the behavior predicted by the weak
damping approximation.

0.58-
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0.54 - —— Oth order
1 2nd order
« 0.521
= ]
< 0.504
0.48-
0.461
| P—
0.44-
0 10 20 30 40 50
n

FIG. 6. Effective temperature of energy levels. The stationary probability distribu-
tions Neg (n) of level |n) obtained through perturbation theory to zeroth order (red
line) and second order (blue line) are compared with the exact numerical simu-
lations (black line). The zero-order effective temperature term gives a constant
effective temperature. The second-order term results in changes in Neg (1), which
are quite accurate for levels near the bottom.
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FIG. 7. Relationship between effective frequency wer = AE; and damping
strength «. Results obtained from the emission spectrum method (circles), cf.
Eq. (26), are compared with those from our perturbation theory (solid and dashed
lines).

1. Strong damping

In the regime of strong damping, the harmonic approximation,
which leads to the level spacing AE, that is independent of damp-
ing, is no longer valid. Instead, the level spacing undergoes slight
renormalization for strong damping. Such an effect can be observed
through the emission spectrum S(w), which represents the spectral
density of photons emitted by the driven resonator and is given by

S(w) = 2Re/0oo e Tra'e” (apy)]dt. (26)

Our method inherently incorporates damping effects into the cal-
culation of AE,. For finite damping, the squeezing parameters u
and v are complex numbers, determined by the steady-state condi-
tions given in Eq. (22). Substituting these parameters into Eq. (20),
we obtain the effective frequency w.s = AE;. In Fig. 7, we compare
the results obtained through the emission spectrum of Eq. (26) with
those from our perturbation theory, demonstrating satisfactory con-
sistency. The minor discrepancy arises primarily from higher-level
spacings AE,(n > 1), which are generally smaller than the first-
level spacing AE;. For more accurate results, the average of all level
spacings should be considered in the calculations.

2. Dephasing

To incorporate dephasing, we introduce the dephasing term
#”" D[’ a]p into the master equation (7). For convenience, we define
a generalized Lindblad operator L£[A;B]p = 2ApB - BAp — pAB. In
the spirit of the rotating wave approximation, we obtain the renor-
malized master equation for the displaced and squeezed density
operator p = S'DYpDS (see the detailed derivation in Appendix B),

% = —i[H,p] + g{(l +N)D[a]p + ND[a"]p} + gME[aT;a*]p
+ gM* Llasalp + 7" (o + |ul*)> Dla’alp

+ 1w’ (D15 + Dla’]p), 27)
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FIG. 8. Renormalized effective Bose distribution N due to dephasing effects for (a)
the LAS and (b) the HAS. We compare theoretical predictions from Eq. (28) with
the exact numerical results and extract the linear relationships.

where the renormalized Bose distribution, affected by dephasing, is
given by

h ph
’7%|a*u +av* P = [uf + a(luf? + oP) + Dot u+ av*
(28)
We verify our predictions for the renormalized Bose distribu-
tion by comparing them with exact numerical simulations accord-
ing to the probabilities over the two lowest levels, specifically,
N =p2/(p1 - p2). In Fig. 8, we plot and extract the renormalized
Bose distribution as a function of dephasing, which demonstrates an
excellent agreement between the numerical results and the analytical
predictions given by Eq. (28) for both LAS and HAS.

N=N+

IV. CONCLUSIONS

In this work, we have investigated the quantum dissipative
dynamics of a driven Duffing oscillator near the bottoms of its stable
states. We elucidated the intricate interplay among the nonlinear-
ity, quantum fluctuations, and the influence of an external driving
field. We formulated an effective quantum master equation that
encompasses quantum and thermal fluctuations, strong damping,
and dephasing within a unified framework. We have developed a
refined perturbation approach to analyze the quantum dynamics
near both the LAS and the HAS of the Duffing oscillator. While
the LAS behavior can be approximated using a harmonic oscillator
model, the HAS exhibits more complex behavior owing to signifi-
cant nonlinear terms. Because of quantum fluctuations, even at zero
temperature, higher energy levels near the bottom of the poten-
tial well are excited. We calculated the level spacing and effective
temperature near the bottom of the HAS and compared them with
numerical simulations, demonstrating the accuracy and utility of our
proposed approach.

We also investigated the effects of strong damping and dephas-
ing on the system’s dynamics. We showed that the level spacing
undergoes slight renormalization for strong damping, which can be
observed through the emission spectrum. We derived the renormal-
ized quantum master equation and analyzed the system’s behavior

pubs.aip.org/aip/apq

affected by dephasing. Our work provides new insights into the
quantum dynamics of driven Duffing oscillators, particularly near
their stable states, and offers a theoretical framework that can be
applied to related quantum systems under strong damping and
dephasing conditions.
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APPENDIX A: DOUBLE PERTURBATION THEORY

To effectively address Hamiltonians containing second-order
perturbation terms, exemplified by the HAS in the driven Duffing
oscillator, we develop a framework for double perturbation theory.
This theory is specifically designed for systems where treating the
second-order terms independently is essential for maintaining com-
putational precision and obtaining physically meaningful results.
Consider a Hamiltonian of the general form,

H=Hy+yH +y’Ha, (A1)

where y is a small parameter. In conventional perturbation theory,
the terms yH, + y*H, are often treated as a single perturbation term.
However, for the HAS of the driven Duffing system, this approach
does not yield results with the necessary accuracy. Therefore, we
introduce the concept of double perturbation theory, where the
terms are handled separately.

The eigenvalues and eigenstates of Hy are denoted as e

and |1//,50)), respectively, satisfying H0|1//,§0)) = 65,0)|1//,50)). The exact
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eigenvalues and eigenstates of H are denoted as e, and |y, ), which
can be expanded in powers of y as

€n = ( + ye )y yze(z) + y3€(3) + y4€(4) + o(ys),
OIS S AIMOINIE JOIWON
|‘// ) V};ﬂ kn | 2 Z}l In | (A2)
+y Z 5(3) (0) )+ Z {54)| (0) +0()’5).
m#n p#En

From the eigenvalue equation H|y,) = €4|y,), we can derive the
following perturbative results order by order:

(1) to the order of y° = 1: Hy |1//(0)) (O)WJ(O))

(2) tothe order of y:

(Z CDED Oy | gy ©) ) (Z e“”fél)w(°)>+€(1)|%0))),

k#n
(A3)
which gives us the perturbative result to the first order,

1
el = (v, (0)|H |1//(0)), ;Enl)=m(1ﬂk |H1|1//(0)), (A4)

(3) to the order of yZ:

A me

I#n

=y (Z 61(10)512)| (0)

> EVHy") + Hy Iw‘°)>)

ZEIEI) (1)| (0) 2)|W(0)))

l#n
(A5)
which gives us the second-order perturbative result,
e = X (i 1)) + (i Halwi”),
k#n
o_ 1 OIFTAMOINTE
= (0 (o>(Z< [Hilyy )8, (A6)
€ —€ k=

+ (y | Halyl”) - “)E“’)
(4) to the order of y3 :

y (Z (0)5(3) (0) Z fl Z)H |1//(0) Z f;fl)H W(O) )

m#n l#n k*n

(Z COED Oy 4 T (D))

m#n l#n

+ 3 EDeD ) + e,ﬂ”lwﬁo))), (A7)

k#n

pubs.aip.org/aip/apq

which gives us the following perturbative result to the third
order:

W )ED + ey ?)E),

e’ =3 (v
I#n

G) _ 1 (0) (0)y£(2)
mn = 6(0)_6(0)[2 (( [Hily; ), (A8)
n m I#n

+ <Wr<n0)|H2|V/1(O))£1(nl)) (I)E(Zn) (2)&(”1”)];
and (5) to the order of y4:

(Z COED D) L 5 ED G O) 4 5 ED [y @) )

p#n m#*n I£n

[Z (e (0)5(4) (1)5(3) r(nln) 512) (ln)€(3))|1l/(0))
m#+n
+ e,,4)|w<0))] (A9)

which gives us the following fourth order perturbative result:

O)|H |1//(0)> )

In

+ (YO Hy)ER),

&= 1y

l#n
& = O <o)[2( Sy Ve + (g |l )ED)

- e - - 0 |

(A10)
Similar expressions can be derived for higher-order
corrections.

For the high-amplitude state of the driven Duffing oscillator,
the perturbative Hamiltonian is given by Eq. (20),

Hh h h h
% = hO + th + yhz, (All)

where the order parameter y is \/A. The zeroth-order Hamiltonian
he = [(1 = 4\ o)) (o + |uf) - ZA(aZZuv +oquv)]a'a (A12)

corresponds to a harmonic oscillator, and the eigenstates |1//,EO)) are
simply the harmonic oscillator states |k) with eigenvalues

e = k[(1 - Mo ) (Jof + [u®) - 2M (a5 uv + aqu™v*)]. (A13)
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By calculating the matrix elements (I|1|k) and (I|h%|k),
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(IR k) = =2V Ak[apvPut (2K = 1) + apulu* (k + 1) + e v|uf (2k + 1) + agvfoP (k= 1) + (v + apu*) /2] 814
= 2\/M(k + 1) [ 0" (2k + 3) + ap|o[ 07k + af ulv* (2k + 1) + o uful* (k +2) + (af u + av™) /2] 01ses1
—2u* oMk (k= 1) (k= 2) (@ v + ™ ) Spges — 20" un/A(k + 1) (k + 2) (k + 3) (a1 + ayv™ )O3
(Unlke) = =[22luvf + [ul Yo+ (|uf* + [o]* + 4luv*)* 18y = 20 w3 /k(le = 1) [K[uf* + (k= 1)[v]* |81
=20 uy/(+ 1) (k+ 2)[(k+ 2) [ + (k+ Do 002 = (0 0) ek = 1) (k= 2) (k= 3) 014

(A14)

— (v u)’/(k+ 1) (k +2) (k+3) (k + 4) 80145

we can apply the double perturbation theory to obtain the desired
perturbative results, such as level spacing and effective temperature,
for the high-amplitude state, as detailed in the main text.

APPENDIX B: DEPHASING

This section presents the derivation of Eq. (27) in the main
text. To incorporate dephasing, we introduce the dephasing term

#”" D[a’a]p into the master equation. For convenience, we define
a generalized Lindblad operator L[A;B]p = 2ApB— BAp — pAB,
which satisfies

D[Alp = L[A;AT]p,

D[A +B]p = D[Alp + D[Blp + L[A;B']p + L[B;AT]p,
L[A;B+Clp= L[A;B]p + L[A;Clp, (B1)
L[A+B;Clp=L[A;Clp+ L[B;Clp,

(L[4;B]p)" = £[BA"]p.

Utilizing these properties, we derive the transformed dephasing term
under the action of the displacement and squeezing operators,

s'DT(Dlatalp)DS = (Jvf* + [u?)> Dlatalp +|a*u+ av*f(D[a*]p
+ Dlalp) + vl (Dla'"1p + Da’]p)
+ Lp+ (Lp)' (B2)

The term Lp includes various higher-order terms,

Lp= |uv|2£[aT2;aT2]p +|a u+av*|P Llaa')p
+v u(au+av®) L'[aTZ;aT]p +out (au* +a*v) L]a;a’]p
+v u(au’ +a’v) L]a; aTZ]p +out (aFu+av*) L]a*a']p
+ (o] + |u|2){v*uﬁ[afa; aTZ]p +vu’ Lla'a;a’]p

+ («Fu+av) Lla'sa'alp + (au” + a*v) L[a; aTa]p}. (B3)

In the spirit of the rotating wave approximation, we neglect the
terms £pand (£p)' in Eq. (B2). Adding the dephasing term to the
renormalized master equation, we obtain

% = —i[H:P] + g{(l +N)D[a]p+ND[aT]p} + gME[aT;aT]p

+ 2M" Llasalp + o (of + uf')* Dla’alp
+ 1" |uof (D[a"1p + D[a’]p), (B4)

where the renormalized Bose distribution, affected by dephasing, is
given by

h
N=N+ ’1%|oc*u +av*? = |uf* + a(jul* + [v]*)
i
+ £|a*u+0¢v*|2. (B5)
K
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ABSTRACT

Research aimed at elucidating the foundations of quantum theory can have a direct impact on quantum technology. Two examples illustrate
this potential: (1) the coupling of quantum systems to arbitrary classical environments that can be described by irreversible thermodynamics.
In the spirit of Dirac’s replacement of classical Poisson brackets by commutators, a thermodynamically consistent coupling of quantum
and classical systems can be obtained by quantization of the geometric structure of classical irreversible thermodynamics. (2) The stochastic
bra-ket interpretation of quantum mechanics, which is obtained by unraveling density matrices in terms of bra-ket pairs of stochastic jump
processes in Hilbert space. It offers an alternative realization of entanglement and avoids paradoxes by imposing severe but natural restrictions

on the types of systems to which quantum mechanics can be applied.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0268387

I. INTRODUCTION

Any practical quantum device must interact with the classical
world of our direct experience in some way. For instance, a quan-
tum sensor needs some kind of display, and a quantum computer
should presumably interface with a classical computer to achieve its
full potential. A Hamiltonian coupling between quantum systems
and their classical environment is expected to be the most effec-
tive method for transferring “results” gained by quantum sensors or
computers. However, a detailed understanding of dissipative cou-
plings between quantum and classical systems is also important, if
only to minimize undesirable dissipative interactions.

The good news of the first part of this paper is that there exists
a general thermodynamic framework for coupling quantum sys-
tems to their classical environments, which are assumed to evolve
according to the laws of reversible and irreversible dynamics. This
framework has been established by quantizing a geometric formula-
tion of classical irreversible thermodynamics, offering a significant
extension of the theory of open quantum systems."””

The development of new and improved quantum devices would
undoubtedly benefit from a more intuitive understanding of quan-
tum mechanics. In particular, entanglement, which embodies the

holistic nature of quantum mechanics, is counterintuitive but cru-
cial. In the standard approach, it leads to several well-known para-
doxes. When a quantum system is divided into two subsystems, such
as two particles or groups of particles, entanglement is the phe-
nomenon that each subsystem cannot be described independently
of the state of the other subsystem, even when the subsystems are
separated by a large distance.

After 100 years of quantum mechanics, rather than adher-
ing to dogmatism and relying solely on its mathematical frame-
work, we should demand a convincing interpretation. Should we
not consider the so-called measurement problem of quantum
mechanics a potential obstacle for the advancement of quantum
technology?’™*

At least Feynman was amusingly irritated when he began con-
templating what quantum computers could be good for,” “we always
have had a great deal of difficulty in understanding the worldview
that quantum mechanics represents. At least I do, because I am an
old enough man that I haven’t got to the point that this stuff is obvi-
ous to me. Okay, I still get nervous with it . . . you know how it always
is. every new idea, it takes a generation or two until it becomes obvi-
ous that there’s no real problem. It has not yet become obvious to
me that there’s no real problem. I cannot define the real problem,
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therefore, I suspect there’s no real problem, but I'm not sure there’s
no real problem.”

The good news in the second part of this paper is that there
exists a new interpretation of quantum mechanics, which offers a
fresh perspective on entanglement and eliminates the paradoxes that
arise in the standard approach to quantum mechanics.

1. DISSIPATIVE QUANTUM SYSTEMS

The emergence of irreversibility has been intensely investigated
and heavily debated for ~150 years. Boltzmann’s transport equation
for rarefied gases” marks the first milestone in this development. It
is an irreversible equation for the single-particle probability den-
sity in position and momentum space based on the collision laws
obtained from the Hamiltonian dynamics of gas particles. It also
implies an evolution equation for entropy. By the end of the 19th
century, Boltzmann had clearly understood the probabilistic nature
of the second law of thermodynamics, recognizing that violations
would never be observed for macroscopic systems but could become
noticeable in very small systems.

Fluctuation-dissipation relations’ "’ and projection-operator
methods'* '® played a significant role in advancing the field of
irreversible thermodynamics. In the 1960s, the foundational prin-
ciples for formulating linear irreversible thermodynamics were
well-established and documented in a classical textbook.'

An elegant geometric formulation of classical nonequilibrium
thermodynamics, initiated by Grmela’””' in 1984, has led to the
so-called GENERIC framework (general equation for the nonequi-
librium reversible-irreversible coupling): " Reversible dynamics
is generated by energy via a Poisson bracket, whereas irreversible
dynamics is generated by entropy via a dissipative bracket.

Understanding the emergence of irreversibility on the quan-
tum level is expected to be considerably more challenging, certainly
not easier than for classical systems. We aim to avoid limitations
imposed by perturbation theory, simplistic models like reservoirs
composed of harmonic oscillators, or approximations of unclear
validity.

Lindblad formulated a quantum master equation for the den-
sity matrix of a dissipative quantum system based on the assump-
tions of linearity and complete positivity.”* Grabert has used the
projection-operator method to derive a quantum master equation
that is nonlinear in the density matrix.'>”” Both equations address
the dissipative coupling of a quantum system to a bath. In many
applications, the classical environment should not be limited to a
heat bath. Ideally, the coupling of a quantum system to an arbitrary
classical nonequilibrium system would be desirable.

A systematic framework for quantum systems in contact with
finite quantum heat reservoirs has been established in a pioneering
paper.”® This approach elaborates the meaning of entropy produc-
tion and sheds light on the emergence of irreversibility in the limit of
large heat reservoirs. More recent developments are summarized in
abroad collection of over 40 papers’” and in a recent review article,”®
both of which emphasize fluctuation theorems and information-
theoretic aspects while also addressing experimental achievements
and practical applications.

The geometric structure of the GENERIC framework offers
the opportunity to extend Dirac’s approach to quantization from

13
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FIG. 1. Dirac-style quantization of dissipative classical systems for avoiding the
challenging task of explaining the emergence of irreversibility at the quantum level.

Hamiltonian to dissipative systems. Instead of deriving suitable mas-
ter equations for dissipative quantum systems emerging from the
reversible equations of quantum mechanics, a quantization proce-
dure, in the spirit of replacing Poisson brackets by commutators,
is applied to dissipative classical systems. As illustrated in Fig. 1,
this idea eliminates the most challenging task of explaining the
emergence of irreversibility at the quantum level.

As the von Neumann entropy is readily available as a generator
of irreversible dynamics for quantum systems described by density
matrices, one only needs to find a quantization rule for the dissipa-
tive bracket, analogous to Dirac’s replacement of Poisson brackets
with commutators.

This idea has been pursued in Ref. 29 and further formal-
ized and generalized in Ref. 30. The argumentation and notation in
those papers are very abstract because the emphasis is on the deep
structural features of the procedure. Here, we offer a much simpler
reformulation suitable for practical applications.

A. System and environment

The variables chosen to describe a quantum subsystem and
its classical environment are summarized in Table I. In addition,
energy and entropy as the generators of reversible and irreversible
dynamics, respectively, are listed in this table.

The proper arena for quantum mechanics is provided by sep-
arable complete Hilbert spaces, which are complex vector spaces
equipped with inner products.””* Observables are self-adjoint lin-
ear operators on a Hilbert space .7#. Here, we focus on the evolution
of the density matrix p, also known as the statistical operator on /7.
The density matrix characterizes the state of our quantum subsys-
tem, and its time evolution determines the evolution of the averages
(A), = tr(pA) of all quantum observables A. This perspective cor-
responds to the Schrodinger picture, which we use throughout this
letter.

TABLE . Variables and the generators of reversible and irreversible dynamics for a
quantum subsystem and its classical environment.

APL Quantum 2, 026121 (2025); doi: 10.1063/5.0268387
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The discrete, continuous, or mixed set of variables x for the
classical environment forms a manifold .#. Observables are func-
tions or functionals on the manifold .. For notational simplicity,
we assume a discrete set of variables labeled by an index j or k. The
modifications required for continuous sets of variables, in particu-
lar the proper generalization of matrices and partial derivatives, are
explained in detail in Sec. 2 2 and Appendix C of Ref. 33.

Note that we allow the Hamiltonian H(x) to depend on the
variables of the environment, thereby introducing a reversible cou-
pling of the quantum system and its environment. The appear-
ance of classical external fields in the Hamiltonian of a quantum
system is quite common, for example, a static magnetic field in
the Schrodinger equation for discussing Larmor precession or the
electromagnetic four-vector potential in the Pauli equation.

B. Quantization of dissipative structure

At the heart of quantizing the irreversible structure of nonequi-
librium thermodynamics is the correlation of two Hilbert space
operators A and B**%**

(4,B)5, = tr(p' ™ i[Ql, 4] p" i[ Qus B])

+ur(p' ™ i[QL B] o i[QuAT]), (1)

in terms of the dimensionless operator Q,, which is from a set of
coupling operators labeled by a. The operators A and B are typically
self-adjoint, whereas the coupling operators Q, usually are not (for
example, they can be creation and annihilation operators). The sec-
ond trace term in the definition (1) has been added such that (A, B)Zu
becomes real, which is crucial for the coupling to a classical system.

The correlation (A, B);‘u is closely related to the quantity

introduced in Eq. (1) of Ref. 30. Note the symmetry

A,B) = (B',at)", )
(4B);, = (5147)
and the positivity property

<A*,A>:u >0, 3)

Moreover, an underlying joint convexity property follows from
Lieb’s theorem [see, for example, Eq. (2.120) of Ref. 1].

We further introduce the self-adjoint generalized free-energy
operators

8Et0t (x)

Fy(x) = Ka (%)

{8S(x) H(x) +

Etot
ax( Dl P}’
4)

where
E¥(x) = E(x) + (H(x)), )

and the matrices Kj;(x) associated with the coupling operators Q,
are assumed to be symmetric and positive semidefinite. The sim-
plest dependence of these matrices on u is through a non-negative
real prefactor hq(u). We refer to the quantities Fy (x) as free energy
operators because they are combinations of the energy and entropy
operators with relative weights proportional to dS and —dE"".

pubs.aip.org/aip/apq

C. Evolution equations
According to the quantization procedure proposed in Refs. 29
and 30, the evolution of the average (A), of an observable A of

the quantum subsystem is governed by the first-order differential
equation

d(A) i 1 u a
= AN, = % [ (F.A), du @

which actually constitutes the essence of the Dirac-style quantiza-
tion procedure. The first term expresses reversible evolution, and
the second term provides the dissipative coupling to the environ-
ment. In the reversible term, we clearly recognize the commutator
that, according to Dirac, replaces the Poisson bracket of classi-
cal mechanics. The correlation in the second term constitutes the
previously suggested replacement for the dissipative bracket in the
generalization of Dirac’s quantization procedure.”””"**

The evolution of the classical environment is given by the first-
order differential equations

&1 2D B0
33 [ e (e ey, 25

+ kg (ln p, H(x) ):u (7)

tot
Euqd
Ox

The first term describes reversible dynamics of the environment
generated by the energy. The energy gradient is multiplied by the
antisymmetric Poisson matrix L(x), which is given by the symplec-
tic matrix transformed to non-canonical coordinates. The Poisson
bracket of two observables is obtained by multiplying the Poisson
matrix from both sides with the gradients of the two arguments of
the bracket.

The second term in Eq. (7) describes irreversible dynamics gen-
erated by the entropy gradient. The friction matrix M (x) is assumed
to be positive-semidefinite so that irreversible dynamics essentially
follows the entropy gradient.

The remaining term represents the dissipative coupling
between the quantum system and its environment. It is constructed
such that the change in the energy of the quantum system, as
obtained from Eq. (6) for A = H(x), is compensated by the change
in energy of the classical environment, as obtained by multiplying
the evolution Eq. (7) with OE"'(x)/Ox.

The following degeneracy relations are part of the GENERIC
structure of classical nonequilibrium systems:
3S(x) OE"™(x)

Ox

L(x)- =0, M(x)- -0, )

They express the conservation of entropy by reversible dynamics and
the conservation of energy by irreversible dynamics for any choice of
the respective generators of the dynamics.

Equation (6) specifies the evolution of the averages of all quan-
tum observables A evaluated with the density matrix p. It can be
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rewritten as an evolution equation for p, which we refer to as the
thermodynamic or GENERIC quantum master equation

d
% - Z f Qup'
. [oa,p“ [Qu Fi(x)] o]} du (9)

Note that the reversible evolution is governed by the commuta-
tor with the Hamiltonian, whereas the dissipative contribution pos-
sesses a double commutator structure involving coupling and free
energy operators. The classical analog of a quantum master equa-
tion is a diffusion of the Fokker-Planck equation for the evolution
of a probability density, incorporating first and second derivatives
for the reversible and irreversible contributions, respectively.

The master Eq. (9) is our fundamental equation for open quan-
tum systems. As a consequence of the definition (1), the second term
in Eq. (9) is generally nonlinear in p. This nonlinearity of the irre-
versible contribution is caused by the noncommutativity of quantum
observables and implies that, in general, our master equation can-
not be of the popular Lindblad form (see, for example, Sec. 3 7 of
Ref. 1 for a discussion of nonlinear quantum master equations).
The specific conditions under which the GENERIC quantum master
equation is linear in p are discussed in the Appendix.

Equations (7) and (9) describe the evolution of the state vari-
ables for the classical environment and the quantum system intro-
duced in Table I. They represent the dissipative coupling of a
quantum system to a general classical nonequilibrium system as
its environment, achieved through Dirac-style quantization of the
GENERIC framework. An additional reversible coupling is included
in the dependence of the Hamiltonian H(x) of the quantum system
on the classical variables x.

H(x) pl- “lQLFE(x)] p ]

D. Entropy production

With the evolution equation for all system variables at hand, we
can now calculate the time-evolution of entropy,

BS(x) 98(x)
Ox Ox

5T KU A, b )

“M(x) -

with the generalized free-energy operators

8S(x) 8Et°t(x)

J

fi(x) = H(x) + ks In p. (11)

Note that these operators ﬁ(x) are closely related to the operators
Fi(x) defined in Eq. (4).

The first term in Eq. (10) describes the entropy production
in the classical environment. Note that only the symmetric part of
the friction matrix M(x) contributes to entropy production. An
antisymmetric contribution to M(x) would describe irreversible
processes without entropy production Historically, this possibility
has been introduced by Casimir.'””” Recent examples of irreversible
processes without entropy production include slip phenomena and
the energy cascade in turbulence.*®

The second term in Eq. (10) describes the entropy produc-
tion associated with the dissipative coupling of the quantum system

ARTICLE pubs.aip.org/aip/apq

and its classical environment. Note that both contributions to the
entropy production (10) are always non-negative. In a thermody-
namic setting, this property is more relevant than the complete
positivity assumed in Lindblad’s approach.

E. Applications

The first derivation of a nonlinear quantum master equation
of the type (9) for a quantum system coupled to a heat bath was
achieved by using the projection-operator method.'*”” The same
type of nonlinear equation has been recovered from the quantization
of GENERIC and illustrated for the examples of a two-level system
and a damped harmonic oscillator.”* The zero-temperature limit of
the thermodynamic quantum master equation has been discussed in
Ref. 37. In addition, heat transport in quantum spin chains has been
discussed with this master equation.*®

It has been shown that the nonlinear quantum master Eq. (9)
leads to a biexponential decay, a realistic susceptibility profile, and
ultralong coherence of a qubit, which is not limited by the energy
relaxation time because complete positivity is not imposed.”” It has
been recognized that the thermodynamic quantum master equation,
which is generally nonlinear, may be of the linear Davies-Lindblad
type if the coupling operators Q, are eigenoperators of the Hamilto-
nian of the quantum subsystem and the associated coupling matrices
K; (x) are chosen suitably (see Appendix).”

The powerful tool of stochastic unravelings' of quantum mas-
ter equations for dissipative quantum systems in terms of stochastic
jump processes in Hilbert space has been applied to nonlinear equa-
tions of the type (9). The nonlinearity can be produced by mean-field
interactions in the stochastic jump process.’” One- and two-process
unravelings have been developed and tested in Ref. 41.

The dissipative coupling of a quantum system to a time-
evolving environment has been explored in Ref. 42. Practical appli-
cations include vibrational relaxations in liquids,”> where slower
rotational and translational modes can be treated by classical ther-
modynamics and hydrodynamics, or the Marcus theory of electron
transfer in molecular systems,"* where the dielectric environment
can be treated by classical thermodynamics and electrodynamics.
Further applications include spin-selective radical-ion-pair reac-
tions relevant to photochemistry and photosynthesis,” quantum
dots exchanging energy with two heat baths,*® the coupling of quan-
tum systems to classical opto-electronic systems for the modeling of
laser devices,* semi-classical drift-diffusion-reaction models for the
transport of charge carriers in opto-electronic devices,*” and coupled
spin dynamics for a sensitivity enhancement of magnetic resonance
imaging and spectroscopy.*’

As a final application, we mention that quantum master Eq. (9)
provides the foundations of dissipative quantum field theory [cf.
Eq. (1.45) of Ref. 49]. In this approach, dissipative smearing reg-
ularizes quantum field theory at short distances. Some ontological
implications of dissipative quantum field theory have been discussed
in Ref. 50. The unraveling of the quantum master equation leads to a
new simulation technique for quantum field theory, where the sim-
ulation time corresponds to real time. In this context, it has been
realized that it is natural to treat interactions as stochastic jumps.

Efficient simulations based on unravelings, in which the inter-
actions of reversible quantum systems are treated as stochastic
jumps, have been developed and tested in Refs. 51 and 52. This
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reformulation naturally leads to a new interpretation of quantum
mechanics,” which is discussed in Sec. I11.

I1l. STOCHASTIC BRA-KET INTERPRETATION
OF QUANTUM MECHANICS

It is desirable for an interpretation of quantum mechanics to be
based on quantum field theory. For example, in the hydrogen atom,
the electron and the proton do not really interact through the static,
classical Coulomb potential appearing in the Schrodinger equation,
but rather through the exchange of photons.

At any given time, a hydrogen atom consists of an electron, a
proton, and a number of photons mediating electromagnetic inter-
actions between the charged particles. As the proton is no longer
considered a fundamental particle, one might prefer to say that a
hydrogen atom consists of an electron, three quarks, and a number
of photons and gluons mediating electromagnetic and strong inter-
actions. In any case, the hydrogen atom has a well-defined content
of fundamental particles at any given time. These remarks should
clarify that the usual quantum mechanical treatment of the hydro-
gen atom is a semi-classical approximation involving static classical
interactions at a distance. An illustrative toy version of a quan-
tum field theoretical calculation illustrates how bound states can be
treated on a more fundamental level.”* The comparison to quan-
tum mechanics is based on the Fourier transformation of the wave
functions from position to momentum space.

In contrast to wave functions or density matrices, which
describe the properties of an ensemble of hydrogen atoms, stochas-
tic unravelings of density matrices allow us to describe individual
atoms. We thus gain a new perspective on both quantum mechan-
ics and quantum technology. The idea that any quantum system
has a well-defined particle content suggests that, at any given time,
the sst‘tge{p’(can be described by a multiple of a Fock space base
vector. 7"

A. Idea of unravelings

Inspired by the discussion of the hydrogen atom, our goal is
to reformulate the equations of reversible quantum mechanics in
terms of stochastic jump processes, where interactions are treated
as discrete collision events. Therefore, we need a splitting of the
full Hamiltonian into free and interacting contributions, H = Hfree
+ H™, We further assume that there exists a distinguished basis of
orthonormal eigenstates |m) of the free Hamiltonian H™, which
are labeled by the natural number m. The corresponding eigen-
values of H™ are given by E,,. Finally, we assume that the strict
superselection rule of quantum field theory is inherited by quantum
mechanics, meaning the state of the quantum system at any time
t is described by a complex multiple of some base vector |m;). No
superpositions between different base vectors are allowed.

With an unraveling in terms of two stochastic processes, |¢),
and |y),, in Hilbert space, we wish to reproduce the density matrix
p, evolving according to the von Neumann equation, which is the
reversible part of the quantum master Eq. (9) for a quantum sys-
tem without any dissipative coupling to the environment, by the

ARTICLE pubs.aip.org/aip/apq

pe=E(1¢),(vl,); (12)

where we use Dirac’s bra-ket notation for state vectors (kets) and
their duals (bras). The use of the dyadic product in Eq. (12) is moti-
vated by the task of constructing a tensor from the stochastic state
vectors in Hilbert space. The expectation E(-) can be thought of as
an average over the trajectories of the jump processes.

With the representation (12), the average of a quantum observ-
able A can be obtained as an expectation of stochastic matrix
elements,

(A)p = tr(PfA) = E((V/|tA|¢):) (13)

This expectation of a bilinear form of stochastic states provides the
average of any observable A. Their stochastic nature arises from
spontaneous quantum jumps occurring at random times. In the
stochastic averaging procedure, nontrivial phase effects and entan-
glement can arise from this bra-ket formulation. The representation
of quantum observables by linear operators on a Hilbert space
suggests that there are two sides or aspects associated with every
observable A, which, according to Eq. (13), are expressed by the two
processes of the unraveling.

B. Stochastic jump process

The strict superselection rule, which states that linear combina-
tions of different base vectors do not correspond to physical states,
reduces the enormous number of possible stochastic jump processes
|¢), and |y),. It naturally guides us to a construction of piecewise
continuous trajectories with interspersed jumps among basis vectors
for the two independent, identically distributed stochastic processes.
The following unique stochastic jump process has been constructed
in Ref. 53.

1. Free evolution between jumps

If the system between the times ¢’ and ¢ is represented by a mul-
tiple of the base vector |m), the complex prefactor oscillates in time
and leads to an overall phase shift given by —E,, (¢ — t') /h.

2. Random jumps

If the system is represented by a multiple of the base vector |m),
a positive rate parameter r,, characterizes an exponentially decaying
probability density for a jump to occur in time. If a jump occurs at
time £, a transition from ¢; |m) to a new state at time ¢+ is determined
by the following stochastic jump rule:

|(I\Hmt|m)|
Ey ({1 H™|m)]

To reproduce the von Neumann equation, the rate parameters
rm and the weight factors fj,, have to be chosen such that the
following conditions are satisfied:

¢t |m) = ¢ fim|l) with probability py, = (14)

lhrm(plmflm - 6lm) = <Z|Hmt|m) (15)
The most general solution of these conditions is given by

B8y — i (H™|m))

following expectation evaluated on the probability space of the jump fim - Sms (16)
processes: [(I[H™|m)|
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and

_ int
Tm = B, ZZ: [{(I|IH™ |m)], (17)

where S, is a positive real parameter, possibly but not necessarily
equal to 1. To find a criterion for the choice of the free parameter
Sm» we look at the magnitudes of the weight factors f},,,

| fnm| = Rm > Sm = | fim| forl+m, (18)

where R, is defined by the first equation. If we chose S, = 1, then
Ry > 1 would lead to a total weight factor increasing exponentially
in time along any trajectory of the jump process. We therefore prefer
to choose Sy, < 1 and Ry, > 1, fine-tuned such that there occurs no
exponential increase or decrease with time and the complex factors
fim associated with jumps essentially introduce phase shifts,

Rbym Sy P = 1, (19)

The unique values of S,, and R,, obtained from condition (19) are
shown in Fig. 2 as functions of p,, .

The stochastic bra-ket formulation of quantum mechanics
offers a new interpretation of quantum mechanics. It may be consid-
ered an alternative to the currently favored interpretations: Bohmian
mechanics,” *' the GRW approach,” " and the many-worlds
interpretation.”” "

C. Two processes: Quantum effects

For reversible quantum systems, the bra and ket processes
evolve independently. If the initial conditions are also stochasti-
cally independent, the density matrix (12) can be rewritten in the
factorized form

pe = E(1¢) JE((y/,)- (20)

Since the stochastic processes |¢), and |y), are identically dis-
tributed, this representation coincides with the density matrix asso-
ciated with a solution of the Schrodinger equation. Despite the

1.0 :
S
----- 1/R
0.l /R
= 0.6
=
A 04)
0.2}

080 02 04 06 08 10
Pmm
FIG. 2. Magnitude of the weight factors Sp, < 1 and R, > 1 of the stochastic bra-

ket unraveling as a function of the probability p,,,, for self-transitions. As the factor
Rm associated with self-transitions is larger than 1, it is convenient to display its

inverse. For p,,,, = 1/2, one finds Sm = 1/Rm = V/\/5 — 2 ~ 0.486 < 1/2.
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strong superselection rule, the averages E(|¢),) and E(|y),) can be
superposition states. These averages do not describe individual pure
quantum systems, but they rather represent ensembles of pure quan-
tum systems. The apparent superposition results from stochastic
averaging over many individual quantum systems. For mixed states,
the factorization (20) does not work.

Note that a constant shift of the Hamiltonian H™ does not
affect the von Neumann equation, but as it shifts the matrix ele-
ments (m|H™|m), it affects the jump processes. Therefore, to obtain
a unique unraveling, it is important to choose the zero of the
interaction energy based on physical arguments.

If there is no natural choice for the zero of energy, one
might choose the average energy to be zero. A disadvantage of this
choice is that the Hamiltonian depends on the energy of the ini-
tial state. An advantage is that steady pure states are described by
a time-independent E(|$),).

In Ref. 53, the usefulness of Eq. (20) is demonstrated in the con-
text of the Einstein-Podolsky-Rosen experiment.”’”’” Entanglement
arises from the averaging over independent individual states on the
bra and ket sides. The wavelike behavior of quantum particles results
from an interplay between the bra and ket vectors, as illustrated by
the double-slit experiment.™

IV. SOME CONCLUDING REMARKS

We have shown how a theory of quantum dissipation can be
developed by quantizing the geometry-based GENERIC framework
of nonequilibrium thermodynamics. Thermodynamics is invaluable
because it provides a sound language for science and engineering.
According to Einstein’s famous appraisal of thermodynamics,”® “It is
the only physical theory of universal content, which I am convinced
that within the framework of applicability of its basic concepts will
never be overthrown (for the special attention of those who are
skeptics on principle).”

The geometric structure on which GENERIC is based should,
whenever possible, be preserved in developing numerical methods
for solving practical problems. For reversible equations, symplec-
tic integrators that preserve the underlying Hamiltonian structure
are known to be powerful numerical tools.”””” For classical dissi-
pative systems, promising initial steps have been taken to repro-
duce the correct behavior of energy and entropy and to preserve
the underlying bracket structure.”*" For dissipative quantum sys-
tems, the development of structure-preserving methods will be
even more challenging, particularly when stochastic simulations are
included.

The general reversible and irreversible coupling of quantum
systems to classical environments is clearly a cornerstone of quan-
tum technology. It is not only a key tool for simplifying or solving
problems of practical importance, but it also offers a framework for
discussing the measurement problem.

Even closer to the foundations of quantum mechanics is the
stochastic bra-ket interpretation described in the second part of this
paper. By eliminating the famous paradoxes from quantum mechan-
ics through the application of a strict superselection rule, we may
gain deeper intuition about the quantum world. The usual distinc-
tion between the classical and quantum worlds is not fundamental
but rather a declaration of our lack of understanding and intuition,
even after 100 years of quantum mechanics.

APL Quantum 2, 026121 (2025); doi: 10.1063/5.0268387
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According to the bra-ket interpretation, two stochastic jump
processes are required to describe an individual quantum system.
According to Eq. (13), there are two sides or aspects of quantum
variables: a bra and a ket side. The standard equations of quantum
mechanics arise after averaging over ensembles of individual sys-
tems. The stochastic bra-ket interpretation provides a new quantum
reality with a novel implementation of entanglement.

Realism is nice to have for engineers, as well as for down-to-
earth scientists and philosophers. In the words often attributed to
Max Planck, “When you change the way you look at things, the
things you look at change.” An alternative interpretation of quan-
tum mechanics invites new ways of thinking and new questions to
be asked, such as: Is a piecewise linear trajectory of a free particle
between collisions a valid concept? How close in space and time
must the bra and ket trajectories be to contribute to a local measure-
ment? Do particles cease to exist if their bra and ket trajectories move
so far apart that they cannot be detected by any local measurement?
Should the corresponding loss of particles be compensated by the
simultaneous creation of bra and ket vectors in all possible momen-
tum states? Is there a mechanism for bra and ket vectors to stay
spatially close, say by favoring momenta in properly selected direc-
tions during collisions or by an attractive bra-ket interaction? Can
the bra and ket processes describing individual quantum systems be
manipulated separately, say by magnetic fields?

A promising tool for addressing these questions is generalized
versions of double-slit experiments,m'82 where the electrons of the
bra and ket processes always pass through specific slits, but the bra
and ket versions of the electrons might pass through different slits.>
By varying slit widths and analyzing high-precision intensity pro-
files, one could investigate whether interfering spherical waves arise
uniformly along slits (according to the Huygens—Fresnel principle)
or only by interactions at the edges. With configurations involving
more than two slits, possibly arranged in multiple layers, one could
try to find out whether the bra and ket electrons pass through well-
defined slits or sequences of slits. While time-resolved experiments
would provide valuable insights into path lengths, they likely remain
beyond current technological capabilities.

The possibility of describing individual quantum systems,
rather than ensembles, opens up opportunities for novel appli-
cations, although—or perhaps precisely because—these individual
systems are subject to the intrinsic randomness of quantum mechan-
ics. This might be relevant in the context of electronic or optical
devices that exhibit shot noise. For quantum computers, it might be
possible to simulate random variables rather than probability den-
sities. The interplay between the bra and ket aspects of the world
may also be key to understanding the transition from particle-wave
duality to classical behavior.*

Advances in the foundations of quantum theory may be valu-
able for making progress in quantum technology. However, this
is by no means a one-way street. The development of quantum
devices, conversely, helps us to develop experience with and even-
tually intuition for quantum mechanics. The challenge of solving
urgent practical problems may provide a stronger driving force for
progress than the intellectual desire to understand what holds the
world together at its core. Curiosity-driven research sometimes leads
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APPENDIX: LINEAR THERMODYNAMIC QUANTUM
MASTER EQUATIONS

Elaborating on the ideas of Ref. 30, we here determine the con-
ditions under which the GENERIC master Eq. (9) becomes linear.
The identity

d ., ur 1w ;
(AP = (A p] ", (A1)

when used in the definition (1), leads to

o« d —u u
(In p, )y, =~ ur(p'™ QL p" [QuA))

+ itr(quu p1

—urAt 4t
" [QLa"]) (a2

For some weight function h(u), after an integration by parts, we
obtain

S notin gy, du= [P (o1l a))
- (p 10k AT Q)
+h(0){Qi[QwAl)
- h(1)([QwA )
+h(1)(QulQhA")
([Qh.aMQy) . (A3)

P

The nonlinear integral part of the entropy-generated contribu-
tion must be canceled by the energy-generated contribution

[ ), Y, du
- [ h{{e1ek He1p T AT)

to curiosities. and aberrations. In any case, quantum physics must + (P—u[ Ql i AT]PM[ Qu, H(x)]) } du (A4)
become classical! p
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To see the conditions for cancellation more clearly, we rewrite
the generalized free-energy operators (4) as

8Et°‘(x) 8S(x)

Fy(x) = - Kg(x) - [ H(x) + Ta(x) kg In p], (A5)

with the “temperature”

BE“’ (x) Ku(x) OE" ‘(x)

To(x) = (A6)

E“"(x) Ku() BS(x)

If we want T (x) to be independent of u for all choices of the gener-
ators E*'(x) and S(x) of reversible and irreversible dynamics of the
classical environment, K (x) must depend on an overall factor of u
that cancels out in the definition (A6). For a cancellation of the inte-
gral terms in Egs. (A3) and (A4) to arise, the dependence of K (x)
on u must be exponential,

KY(x) = Ko(x) e P, (A7)

If we further assume that the operators Q, are eigenoperators
of the Hamiltonian H(x)

[QuH(x)] = hoaQu,  [QLH(x)] = ~hwaQl,  (A8)

the condition for the cancellation of the nonlinear integral terms in
the GENERIC quantum master equation becomes

hwg

o To(x) 55 (A9)

o=

If the Hamiltonian H(x) actually depends on x, we also expect the
coupling operators and their frequencies introduced in Eq. (A8)
to depend on x. The final linear quantum master equation of the
GENERIC type is given by the linear part of Eq. (A3),

dp i ks — OE“'(x) OE™(x)
I P A
x [QLQup - 2QupQl + pQLQ
+ e (QuQlp - 2QlpQu + pQuQl) | (A10)
Note that for
Pa < exp{ kBTSEl) } (A11)

the « contribution to dissipation in Eq. (A10) vanishes, as can be
verified by using

Qupa = e_ﬁaPaQon sza = eﬂaPanv (A12)
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ABSTRACT

We show that a planar array of bipolar waveguides in graphene can be used to engineer gapped and tilted two-dimensional Dirac cones within
the electronic band structure. The presence of these gapped and tilted Dirac cones is demonstrated through a superlattice tight-binding model
and verified using a transfer matrix calculation. By varying the applied gate voltages, the tilt parameter of these Dirac cones can be controlled,
and their gaps can be tuned to fall in the terahertz range. The possibility of gate-tunable gapped Dirac cones gives rise to terahertz applications
via interband transitions and designer Landau level spectra, both of which can be controlled via Dirac cone engineering. We anticipate that
our paper will encourage Dirac cone tilt and gap engineering for gate-tunable device applications in lateral graphene superlattices.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0251887

. INTRODUCTION

The relativistic nature of graphene’s charge carriers leads to its
fascinating optical and electronic properties. Y Tts discovery opened
the door to the exploration of relativistic physics in condensed mat-
ter systems. Indeed, the rise of graphene inspired the search for new
designer materials with ultra-relativistic spectra, such as 8-Pmmn
borophene. This theoretical material is predicted to contain two-
dimensional (2D) tilted Dirac cones in its electronic band structure
in the vicinity of the Fermi level.” With its discovery came an explo-
sion of interest in the physics arising from tilted Dirac cones. These
cones can either be gapped or gapless and come in three types: type-
I (sub-critically tilted), type-II (super-critically tilted), or type-III
(critically tilted).”” Each geometry gives rise to spectacularly dif-
ferent optical,’ " transport,’’ "’ and thermal properties'*'® and
more.'” " For device applications, it would be highly desirable to
be able to switch between different types of tilted Dirac cones in a
single system post-fabrication.

Currently, there is a dearth of practical, tunable electronic sys-
tems that exhibit 2D tilted Dirac cones. Several theoretical materials

with specific lattice geometries have been predicted to support elec-
tronically tilted Dirac cones.””” " However, after synthesis, crys-
talline structures cannot be practically changed to tune the tilt or
modify the gap of these cones. Rather than placing real atoms in a
particular lattice configuration, we propose to approach the problem
using artificial atoms, namely, bound states trapped inside graphene
wells and barriers organized in a lateral superlattice.

In contrast to non-relativistic systems, both electrostatic wells
and barriers in graphene support bound states. These bound states
are localized about the center of the confining potentials, much like
atomic orbitals in a crystal are centered about their lattice positions.
The confined states of a well and barrier overlap, much like adjacent
atomic orbitals. This overlap can be characterized by the hopping
parameter in the famous tight-binding model. Unlike a real crys-
tal, where the overlap between adjacent orbitals is fixed, the overlap
between well and barrier functions can be completely controlled.
This can be achieved by varying the height and depth of the con-
fining potentials via their top-gate voltages. Hence, constructing a
superlattice from wells and barriers in graphene mimics the band
structure of an atomic lattice but with the advantage of a newfound
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FIG. 1. Schematic of a planar array of bipolar waveguides in graphene created by
carbon nanotubes gated with alternating polarity. The electrostatic potential cre-
ated by the applied gate voltages is shown below. Please note that this schematic
is not to scale; the proposed well/barrier separation is on the order of 50 nm and,
thus, significantly larger than nanotube radii.

tunability. Thus, moving band structure engineering in condensed
matter physics is in the same direction as optical control in designer
metamaterials.*’

In what follows, we show that a lateral superlattice comprised of
repeating well and barrier pairs, i.e., a bipolar array (see Fig. 1), hosts
gapped and tilted Dirac cones in the band structure. By varying the
applied voltage profile of the superlattice, the tilt of these Dirac cones
can be controlled and the bandgap can be tuned to energies cor-
responding to terahertz (THz) photons. By calculating the velocity
matrix element in the vicinity of the gapped Dirac cones, we prove
that the bipolar array in graphene will constitute a platform for tun-
able terahertz optics. While we demonstrate the existence of tunable
tilted and gapped Dirac cones in the electronic band structure, we
emphasize that these cones are satellites to a central gapless cone.
In contrast to Dirac cones in pristine graphene, these central cones
are anisotropic in momentum space, possessing elliptical isoenergy
contours. Applying a magnetic field normal to the plane of the bipo-
lar array creates a platform for gate-tunable Landau level spectra via
Dirac cone engineering. Due to the presence of central gapless and
satellite gapped Dirac cones, the Landau level spectra simultaneously
contain features of massless and massive Dirac fermions.

Il. MODEL

A lateral graphene superlattice can be modeled as an artifi-
cial crystal. While in a crystalline material, electrons hop between
adjacent atomic orbitals; in a lateral superlattice, electrons hop
between neighboring well and barrier sites. Thus, to calculate the
band structure of a bipolar array in graphene, we shall use a simple
nearest-neighbor tight-binding model.

Let us first consider one artificial atom (i.e., a square quan-
tum well or barrier) in our superlattice. Although realistic top-gated
structures in graphene generate smooth guiding potentials’' *’ (i.e.,
varying on a length scale much larger than the lattice constant),
they can be modeled as square potentials with an effective depth
and width. This is because the number of bound states in a poten-
tial is dictated by the product of its effective depth and width. It
should be noted that in what follows, we consider sharp-but-smooth
square potentials, i.e., we neglect inter-valley scattering. The effective

ARTICLE pubs.aip.org/aip/apq

one-dimensional matrix Hamiltonian for confined modes in a
graphene waveguide can be written as

[He + Uy (x)) = Ely(x)), (1

where Hg = ve(oxpx + skoyhky), which acts on the spinor wavefunc-
tion defined in the standard basis of graphene sub-lattice Bloch
sums |y(x)) = v, (x)|@a) + y(x)|®p). The Pauli matrices are
0 = (0x,0y,0;), the identity matrix is I, the momentum operator is
defined as px = —ihdx, and ky is a wavenumber corresponding to the
motion along the waveguide. Here, the Fermi velocity in graphene
is vp ~ 10° ms™!, the energy eigenvalue is E, and the graphene valley
index is sg = +1. The square potential U(x) is defined as

U, <WJ/2,
N LAY
0, elsewhere,

2)
where W is the width of the potential and U < 0 for a well and
U >0 for a barrier. The eigenvalues of Eq. (1) can be obtained
via the method outlined in Ref. 44. For zero-energy states (E = 0),
the eigenvalue problem simplifies and the wavefunction takes on
a simple form (see Appendix A)—these zero-energy well and bar-
rier wavefunctions will be utilized later in this paper. In Fig. 2, we
superimpose the energy spectra for various square wells and bar-
riers. Each potential has the same width and contains only a few
modes within. This occurs when the normalized product of the
potential height and width (|[U|/W/AvE) is of the order of unity.
Indeed, few-mode smooth electron waveguides in graphene can be
experimentally realized using carbon nanotubes as top-gates.*

As shown in Fig. 2, varying the potential strengths of the well
and barrier results in differing group velocities at the crossing point.

E [meV]

FIG. 2. Energy spectrum of confined states within a well of applied voltage
U=-120 meV (blue) and three barriers of strengths 90 meV (gray solid),
60 meV (gray dashed), and 45 meV (gray dotted) in graphene—in each case the
well/barrier width is W = 15 nm. The band dispersions are sketched in units of
energy E in millielectron volts (meV) and wavevector associated with motion along
the potentials k, normalized by the well/barrier width. The formed band crossings
are of type-, type-Ill, and type-Il, respectively. Tuning the barrier height and well
depth changes the filt of the band crossings. The gray regions contain continuum
states outside of the guiding potentials.
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Thus, the crossing formed by an isolated well and barrier can be
switched between type-I, type-II, or type-III by simply changing the
potential strength of the well and barrier. However, by superimpos-
ing the band dispersions of an isolated well and barrier, we have
neglected any coupling between the two systems. When we bring
the well and barrier closer together, the overlap between the barrier
and well states leads to an anticrossing (pseudogap) appearing at the
original band crossing [see Fig. 3(a)].*® For bipolar waveguides cre-
ated by carbon nanotube top-gates atop graphene, the pseudogap
is of the order of several THz."""" However, a single well and bar-
rier does not constitute a macroscopic device, and for realistic THz
applications, an important question must be answered: How is the
band structure of a single bipolar waveguide modified when placed
into a superlattice?
The Hamiltonian of a planar bipolar array H can be written as

N
H=Hg+Y, [Uy(x—xj) + Un(x—x—a)], (3)
i

where U(x) and U, (x) are the individual barriers and wells
[defined through Eq. (2)], centered at positions x; and x; + a, respec-
tively, where x; = jL is a lattice vector, L is the width of the superlat-
tice unit cell, and a is the distance between the centers of a well and
barrier within the unit cell. Since the dispersion of any realistic guid-
ing potential is determined by the product of the potential’s depth
and width, henceforth, we fix the width of all barriers and wells, W,
to be the same. For square potentials, the well position within the

pubs.aip.org/aip/apq

unit cell must satisfy a > W, while the unit cell width must be larger
than the sum of the well and barrier width, L > 2W.

One may envisage a bipolar array created by sandwiching a
graphene sheet in between two planar arrays of nanotubes, with the
top array gated at one polarity and the bottom array at the opposite
polarity. The relative position of these two arrays (parameterized by
a) will be fixed after device fabrication. In a realistic device, it will
not be possible to align the two arrays exactly in such a way that each
tube is equally separated; in general, the two arrays will be separated
by some arbitrary distance (a # L/2). While we have highlighted the
example of using carbon nanotubes to generate each well and bar-
rier potential,"” we note that our theory applies to any technique
used to generate a one-dimensional periodic electrostatic potential
to graphene, e.g., striped dielectrics*® and gates."””"

A. Tight-binding model of a bipolar array in graphene

In a similar fashion to the splitting of atomic energy levels in
the formation of a crystal, the bringing together of N bipolar wave-
guides results in each energy level of the well and barrier splitting
into N sub-levels. Each sub-level corresponds to a particular quan-
tized kx. In the limit that N becomes large, k. can be treated as a
continuous parameter on an equal footing with k,, the wavevector
along the guiding potentials.

The basis functions of the superlattice can be expressed as a lin-
ear combination of individual well and barrier wave functions, i.e.,
Bloch sums,

€5:90:€Z G202 Iudy 92
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FIG. 3. Band structure and schematics of (a) single bipolar waveguide, (b) bipolar array without reflection symmetry, and (c) bipolar array with reflection symmetry. The
bipolar array with or without reflection symmetry possesses a gapless Dirac cone at the center of the electronic band structure. In addition, the bipolar array without reflection
symmetry hosts satellite gapped tilted Dirac cones, while the bipolar array with reflection symmetry hosts satellite gapless tilted Dirac cones. The band structures are plotted
in terms of energy (E) in units of millielectron volts (meV) and wavevector along the potentials k, normalized by the well/barrier widths W = 15 nm. In all cases, the applied
barrier and well potentials are U, = 90 meV and Uy, = —120 meV, respectively. For the bipolar array, the unit cell width is L = 90 nm and the position of the well within the
unit cell is determined by the parameter a = 48 nm in panel (b) and a = 45 nm in panel (c). The gray areas correspond to energies and wavevectors that support plane wave
solutions across the entire potential. The periodicity of the superlattice yields an additional wavevector |ky| < 7/L, where L is the size of the unit cell. The band structures
in panels (b) and (c) were calculated using a transfer matrix model. These panels display orthographic projections of the band structures as viewed along the ky axis. The
band edges are depicted by solid lines (kx = 0) or dashed lines (kx = +m/L), with intermediate values shaded in blue.
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N o
@) = ﬁz ¢y (x - x7)), ()
=1
eikxu N koL
|Dy) = WZ ey (x - x5 - a)), (5)
=1

where |ky| < /L is the superlattice wavevector and the well and bar-
rier functions |y, (x)) and |y, (x)) are the solutions to Eq. (1) with
potentials U, (x) and U,(x), respectively, for a given wavevector
along the guiding potentials k,. Here, we have utilized the so-
called atom gauge, where the orbital center of the well and barrier
states are encoded in the phase of the Bloch sums’! [another com-
mon choice is the cell gauge, where the ¢* term is omitted from
Eq. (5)]. The eigenvalues of the superlattice as a function of ki
(the superlattice wavevector) are determined from the secular equa-
tion det (# — EI) = 0, where the elements of the Bloch Hamiltonian
are defined as 7 = [(®q|H|®g)dx, where a, B = wor b.

We intend to model the electronic dispersion of a superlat-
tice in the vicinity of the original band crossings of the first well
and barrier modes (see Fig. 2). These crossings occur at wavevec-
tors ky = K, = s|K,|, where s =1 or —1. To determine the diagonal
elements of the Bloch Hamiltonian, we approximate the well and
barrier band dispersion with linear functions, i.e.,

s () dx = sy (= K) ©)
and
[ @By () dx sty <K, )

where v,, > 0 and v;, < 0 are the well and barrier group velocities at
the crossing point (see Fig. 2). The inclusion of higher-order terms,
such as an effective mass, is discussed in Sec. I11. Note that the off-
set energy (Eog) of these functions has been omitted for brevity.
To determine the off-diagonal elements of the Bloch Hamiltonian,
we define the nearest-neighbor overlap integrals using the well and
barrier wavefunctions at the crossing wavevector k, = K, = s|K,|. We
can write the intra-cell hopping integral as

s = [ (W)l Hilyn(x - ) dx )

and the inter-cell hopping integral as

yier = [ (A + L= a)) ©

Combining Egs. (3)-(9) and performing a nearest-neighbor tight-
binding calculation yields the Bloch Hamiltonian in the vicinity of
the original band crossing,

shvy (ky — K;)

f (k)
£ (k) (10

H(k) = >
k) [ shvy (ky - Ky)
where

f(kx) = yintraeiikxa + yintereikX(Liu)- (11)

We note that along the superlattice wavevector (ki) axis, the
Bloch Hamiltonian resembles the Su-Schrieffer-Heeger (SSH)

pubs.aip.org/aip/apq

model—the tight-binding model used to describe dimerized atomic
chains, e.g., polyacetylene.”

As is standard in tight-binding methods, the model parameters
(i.€.s Vs Vp» Yintra® and yimer) can be fit to data, e.g., a numerical cal-
culation of the band structure [see Fig. 3(b)] computed via a transfer
matrix (see Appendix B for methods). While the magnitude of the
hopping parameters is determined by intra- and inter-cell well and
barrier separation, the presence of a band minima at ky = 0 dic-
tates that y, . and y, ... have opposite signs. Furthermore, it can
be shown that switching the sign of the wavevector along the guid-
ing potentials (s) or the graphene valley index (sx) flips the sign of
the hopping parameters (see Appendix C). Combining these condi-
tions, we can define y, . = sksy, and y, ... = sksy,, where y, > 0 and
Y, <0.

B. Emergence of gapped and tilted Dirac cones

We now demonstrate the existence of gapped and tilted Dirac
cones within the electronic band structure. These Dirac cones can
be found at the local band minima, i.e., k, = s|K,| and k. = 0. To cap-
ture the quadratic band dispersion of the gapped and tilted Dirac
cone, we must expand the Bloch Hamiltonian to the second-order in
the wavevector. By performing a specific unitary transformation, we
can eliminate second-order terms from the Hamiltonian and deter-
mine the Dirac cone velocity parameters. We perform the following
unitary transformation: .#” (k) = % (k<) # (k)% (ks), where

1 eikx(a—l) ikl
U(ky) = —=| 4 (_ il | 12
(9= Jg ot ] (12)

with [ = [(yz +VIyy2l)/2(y + yz)]L. This wavevector-dependent
unitary transformation moves our Bloch sums out of the atom gauge
[originally defined in Eqs. (4) and (5)]. This unitary transformation
does not affect the electronic band structure but can affect the calcu-
lation of optical transitions—we discuss this point further in Sec. I'V.
Performing an expansion in terms of g, = kx now reveals an effective
Bloch Hamiltonian with no second-order wavevector terms,

A'(q) = SKS%UZ + shv(tq) L + qy0, + sk Tqx0x), (13)

where v is the modified Fermi velocity, ¢ is a tilt parameter, T is
a Fermi velocity anisotropy factor, E, is the local bandgap, and
q=(q, qy) is the deviation in wavevector from the Dirac point
where g, = ky — K. We note that the offset energy has been omit-
ted for brevity. The effective velocity, tilt, and anisotropy parameters
can be expressed through v= (v, —v,)/2, t = (vy +v,)/2v, and
T = /|y1y2|L/hv, respectively. Furthermore, the gap parameter can
be defined through the nearest-neighbor tight-binding hopping inte-
grals |Eg| = 2|y1 + y2|. Indeed, Eq. (13) is the well-known Dirac cone
Hamiltonian possessing a tilted dispersion along the g axis, a non-
tilted dispersion along the g, axis, and a local bandgap. In contrast
to tilted Dirac cone materials formed by crystalline lattices, features
such as Dirac cone tilt () and bandgap (E,) can be tuned by varying
the applied gate voltages of the bipolar array. Throughout the rest
of this paper, we will investigate how varying the voltage profiles of
the bipolar array results in gate-tunable phenomena stemming from
Dirac cone engineering.
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It should be noted that previous studies of graphene superlat-
tices have been limited to periodic wells/ barriers,”*° sinusoidal’”**
periodic even/odd potentials,” or electromagnetic potentials®” that
had reflection symmetry and, thus, did not open a gap in the Dirac
cone. Indeed, we can recover these results by considering the specific
case a = L/2, where the bipolar potential possesses a reflection plane
and the bandgap of the tilted cones vanishes (y, = —y, and Eg = 0)
[see Fig. 3(c)].

Although we have discussed the role of superlattice geometry
in opening bandgaps in Dirac cones, we emphasize that the full band
structure of the bipolar array remains gapless. This is due to gapless
Dirac cones that exist at k = 0 for all superlattice geometries™ "
(see Fig. 3). In this respect, the previously discussed tilted and
gapped Dirac cones are satellites to a central gapless Dirac cone. This
central Dirac cone is not tilted and has elliptical isoenergy contours,
which can be fitted by the phenomenological Fermi velocities along
the kx (vex < vi) and ky (vey < vr) wavevector axes. The energy off-
set of the central Dirac cone is equal to the average potential of the
bipolar array W(U, + Uy, ) /L.

C. Details on the nearest-neighbor
tight-binding model

When applied to crystalline materials, the standard nearest-
neighbor tight-binding assumes that each atomic orbital is well-
localized to its respective lattice site. In the context of this work, our
analytic theory most closely matches the numerical transfer matrix
calculations when the individual well and barrier states are suffi-
ciently localized to the confining potential. Outside of the confining
well and barrier potentials, the wavefunctions corresponding to the
crossing wavevector k, = K, and crossing energy Eo are propor-
tional to ¢~ (to the left of the potential) or ¢ ¥ (to the right of the

potential), where % = (1/hvr)y/ (hveK,)* — Exg. Provided that each
wavefunction is sufficiently localized within a single superlattice
unit cell (XL > 1), we need not consider additional next nearest-
neighbor hopping terms. For example, in Fig. 3, where |K,|W ~ 1.2

ARTICLE pubs.aip.org/aip/apq

and Eo¢ ~ —10 meV, it can be checked that XL ~ 7, thereby justifying
the use of the nearest-neighbor tight-binding model. It should also
be noted that the boundary conditions of finite and infinite bipolar
arrays are different. Namely, in finite arrays, the wavefunction must
decay outside of the outermost wells, whereas for the infinite case,
the system is subject to the Born-von Karman boundary conditions.
Consequently, in finite systems, no guided modes exist in the region
where |E| > hvg|k,| (gray regions of Fig. 3). Conversely, in the infinite
case, guided modes are supported in this region.

lll. GAPPED DIRAC CONES WITH GATE-TUNABLE TILT

Gapped and tilted Dirac cones have been a topic of intense
research. As previously discussed, modifying the degree of tilt leads
to drastically different emergent system behavior. As was demon-
strated in the context of isolated well and barrier band crossings, the
tilt ¢ of Dirac cones in a bipolar array can be modified by tuning the
applied gate voltages. For example, as shown in Fig. 4, varying the
barrier height or well depth tunes the tilt parameter. Interchanging
the well depth and barrier height flips the sign of the tilt parameter
of the gapped satellite Dirac cones. The experimental ability to con-
tinually change the tilt parameter across a broad range of values
means that it can be viewed as an additional degree of freedom in
device applications. As an example of this, in Sec. V, we explore how
varying the tilt of gapped Dirac cones within the electronic band
structure will lead to gate-tunable Landau level spectra.

The tilted and gapped Dirac cones in Fig. 4 correspond to sub-
critically tilted type-I (|¢| < 1) gapped Dirac cones. We note that it
is possible to increase the tilt parameter further toward critically
tilted type-III (|¢f| =1) and super-critically tilted type-1I (|t| > 1)
Dirac cones. We note that for over-tilted Dirac cones (particularly
the critically tilted type-III case), one branch of the electronic band
dispersion appears quadratic rather than linear (see Fig. 2). When
lacking a bandgap, these cones are known as three-quarter Dirac
points and possess interesting properties such as Landau levels with
energy that scales to the four-fifth power of magnetic field strength

k[

Ik \W Ik, | W

FIG. 4. Orthographic projections of the band structures of three bipolar arrays as viewed along the superlattice wavevector. In each plot, the location of the well within
the unit cell is a = 48 nm, the well and barrier widths are W = 15 nm, and the superlattice unit cell width is L = 90 nm. The well and barrier potentials in each panel are
Up = 85 meV and Uy, = =110 meV in panel (a), U, = 110 meV and U, = —110 meV in panel (b), and U, = 110 meV and U, = —85 meV in panel (c). Varying the well
and barrier potentials can be seen to change the tilt of the satellite gapped and tilted Dirac cones within the electronic band structure. The band structures were calculated
using a transfer matrix and are plotted in terms of energy E in units of millielectron volts (meV), wavevector along the guiding potentials ky, and superlattice wavevector k.
In the orthographic projection, the band edges are depicted by solid lines (kx = 0) or dashed lines (kx = +m/L), with intermediate values shaded in blue. The gray areas
correspond to energies and wavevectors that support plane wave solutions across the entire potential.
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TABLE |. Tight-binding model parameters for a bipolar array characterized by two
voltage profiles: U, = —Uw = Uy = 210 meV (model A) and Uy = 175 meV (model
B). In each case, the well and barrier widths are W = 10 nm, the superlattice unit cell
is L = 50 nm, and the well is centered at a = 27.5 nm within the superlattice cell.

Model Uo/meV |K,|W vo/vE y,/meV y,/meV
A 210 2.18 0.68 0.52 -1.56
B 175 1.52 0.57 1.86 -3.99

B and Landau level index #, i.e., E, o< (nB)**.°"** The properties
of these three-quarter Dirac fermions (with and without a bandgap)
could be accounted for in our model by adding an effective mass
(m™) to either the well or barrier modes. For example, amending
the well dispersion, shv,,qy + h* qﬁ /2m”, which was originally defined
in Eq. (7), adds a quadratic term (h’q;/4m*)(I + ) to the gapped
Dirac cone Hamiltonian given in Eq. (13). Therefore, in realistic
critical (type-III) and super-critical (type-II) tilted Dirac cone mate-
rials, the gapped and tilted Dirac cone Hamiltonian may possess
an additional quadratic term. This addition to the tilted Dirac cone
Hamiltonian goes beyond the standard model used to predict the
emergent physics of tilted Dirac cone materials and, thus, constitutes
an interesting avenue for future study.

IV. TUNABLE DIRAC CONE GAP AND TERAHERTZ
TRANSITIONS

In traditional tight-binding models, the atomic orbital wave-
functions are not known; as a result, model parameters such as
hopping integrals are fit to experiment. For the case of equal well
and barrier strengths (U, = —U,, = Up), the band crossing occurs at
zero-energy, resulting in non-tilted (v,, = —v; = vp and t = 0) Dirac
cones in the electronic band structure. In this case, the well and bar-
rier wavefunctions can be found analytically. These wavefunctions
yield a transcendental equation for the crossing wavevector K, ana-
lytic expressions for the well and barrier group velocities vy, as well

()e=9 (©e=%

—

2
%
Ee &
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as the hopping parameters y, and y, (see Appendixes A and C).
For example, let us consider a bipolar array characterized by the
geometry parameters W =10 nm, L =50 nm, and a =27.5 nm.
We consider realistic potential strengths,” e.g., Up = 210 meV and
Up =175 meV in models A and B, respectively. For these two
models, we can derive values for the tight-binding parameters
(see Table I). Substituting these parameters into the effective Bloch
Hamiltonian [see Eq. (10)] provides an accurate match to the elec-
tronic band structure obtained via a transfer matrix [see Figs. 5(a)
and 5(d)].

Using expressions for the tight-binding hopping parameters,
we can derive an expression that directly determines the Dirac cone
bandgap from the bipolar array geometry,

|E| = Eo sinh (W)E'KAL/Z, (14)

where  Eo = 4i°v}|K,[K2e©1Y /U2 (1 + |K,|W), and K| sat-
isfies the transcendental equation K = —|K,|tan (KW) with

K = (1/hve)\/Uj — (hveK,)* (see Appendix C). By varying the
voltage profile of a bipolar array, we can tune the Dirac cone
bandgap within the THz regime: E; = 0.50 THz for model A and
Eg = 1.03 THz for model B.

The possibility of tuning the local bandgap of the Dirac cones
into the THz regime provides a route to THz applications arising
from interband transitions. We assume that the offset gate voltage
of the superlattice places the Fermi level within the bandgap of the
gapped Dirac cones. Upon illumination of light, a photon of energy
hv can excite an electron from the valence band up to an empty state
in the conduction band provided that the photon energy is equal to
the energy separation of the states hv = E, (k) — E_(k). The proba-
bility of optical transitions between some state at some wavevector
k is determined by the absolute value square of the velocity matrix
element (VME) |ve, (k)|, where

ver(k) = (Y= (k)

é-v(k)|¥.(k)). (15)

Vel

Vr

0.6
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FIG. 5. Electronic band dispersions and velocity matrix elements for two bipolar array geometries with well and barrier heights: (a)~(c) U, = —Uy = 210 meV and (d)(f)
Uy = —=Uy = 175 meV. In both cases, the superlattice unit cell width is L = 50 nm, well, and barrier width is W = 10 nm, and the separation between the well and barrier
within one unit cell is a = 27.5 nm. In panels (a) and (d), the full electronic band structure (black dots) is obtained via a transfer matrix calculation and is plotted over a finite
range of wavevectors along the guiding potentials (0 < k,W < 2.6), and the full Brillouin zone along the superlattice axis (|kx|L < 7z/L). In the vicinity of the gapped Dirac
cones, we plot the analytic approximation to the full band structure (blue surface) obtained via the superlattice tight-binding model. Using this analytic approximation to the
band structure, we plot the absolute value of the velocity matrix element |vey (k)| for light polarized along (y axis) and perpendicular (X axis) to the guiding potentials for
both cases.
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Here, |¥. (k)) are the conduction (+) and valence (-) states of the
low-energy Bloch Hamiltonian given in Eq. (10), v(k) is the veloc-
ity operator, and & = exX + ,¥ is the polarization vector of light. We
note that we utilize the eigenstates |V, (k)) and velocity operator
v(k) defined in the basis of well and barrier Bloch sums |®,,) and
|®;). Considering that this Bloch Hamiltonian is in the so-called
atom gauge, the velocity operator can be conveniently determined
through the gradient approximation v(k) = (1/4) Vi#(k)."!

In Fig. 5, we plot the absolute value of the VME for a range of
wavevectors in the vicinity of the gapped Dirac cones. Here, we con-
sider a single bipolar array with two different voltage profiles, i.e.,
models A and B with parameters given in Table I. Optical transi-
tions are supported in the vicinity of the gapped Dirac cones for all
polarizations of light. For light polarized along the guiding potentials
(é =), the max value of the VME is v, (for k, = K},), while for light
polarized along the array axis (& = X), the max value of the VME is
|(L = a)y, — ayi|/h (for kx = 0). For light polarized along the guid-
ing potentials (& = ¥), we see that optical transitions are guaranteed
for photons with energies spanning 2|y; + y2| to 2|y1 — y2|. Varying
the voltage profile of the bipolar array allows for convenient con-
trol over this bandwidth after device fabrication. In this frequency
regime, there appears to be a preference to absorb photons polarized
along the y axis; thus, a bipolar array in graphene could be used as a
component in a tunable thin-film THz polarizer.

In Fig. 5, we clearly observe the optical momentum align-
ment phenomenon in which photoexcited electrons are aligned with
wavevectors perpendicular to the plane of polarizing light. Com-
bining this momentum alignment phenomenon with the tilt** or
warping®* of the satellite Dirac cones could result in the spatial sep-
aration of photoexcited carriers belonging to different satellite cones
(differentiated by the index s). The optical properties of gapless and
gapped tilted Dirac cones are discussed in detail within Refs. 8, 10,
and 65, respectively.

We can also investigate the absorption of right-handed
&y = (X+ i¥)/\/2 and left-handed &y =(X- i$)/\/2 circularly
polarized light. For demonstrative purposes, we evaluate the abso-
lute value of the VME for right-handed circularly polarized light
at the apex of the gapped Dirac cones k= (0,K,), obtaining
lay1 = (L — a)y» + shvo|/~/2h. In this case, illumination from right-
handed polarized light will generate more photoexcited carriers in
satellite Dirac cones with index s = 1. If the well depth and barrier
heights are not equal, these gapped Dirac cones will be tilted in a
direction dictated by the sign of s [see Fig. 3(c)]. The group velocities
resulting from the tilted band structures will result in a photocur-
rent along the waveguide axis. The direction of the photocurrent
will be determined by the handedness of the circularly polarized
light. This phenomenon is somewhat similar to the ratchet pho-
tocurrent predicted for graphene superlattices formed by periodic
strain.®®

It is noted that while the gapped satellite Dirac cones do
not support the absorption of photons with energy less than the
bandgap (2|y1 + y2|), the central gapless Dirac cone will support the
absorption of photons with arbitrarily low photon energies. Hav-
ing an actual metallic interface or manipulating the individual atoms
instead of creating a superlattice potential by remote gates leads to
more drastic changes in the band structure near the central Dirac
cone, as shown in the ab initio studies for 8-Pmmn borophene in
Refs. 39 and 67.

pubs.aip.org/aip/apq

V. DESIGNER LANDAU LEVEL SPECTRA

In this section, we consider a typical bipolar array geometry
with an electronic band structure containing central gapless Dirac
cones and gapped satellite tilted Dirac cones. We assume that the
voltage profile of the superlattice has been selected so that the satel-
lite cones are sub-critically tilted (type-I, |¢| < 1); see Fig. 4. In the
presence of an external magnetic field oriented normal to a graphene
sheet (with field strength B), the energy levels of the charge carriers
become quantized into Landau levels (LLs). For the gapless central
Dirac cones, it is well-known that the LLs take on the energy spectra,

E,, = sign (n.)\/2hv;eB|n.|, (16)

where v, = VVexVey is the effective Fermi velocity of the central
Dirac cone, . is a LL index, and e is the elementary charge. Each LL
has a 4-fold degeneracy arising from each graphene valley (sx = +1)
and electron spin.

Assuming that the applied gate voltages are selected such that
the gapped satellite Dirac cones are of type-I, the LL spectra of the
tilted gapped satellite Dirac cones, described by the Hamiltonian
given in Eq. (13), take the form

‘ 22 13 AEg\?
E, =sign (n)\| 2hv"eA”B|n| + - (17)
|Us| = U ‘ ‘ —
€
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FIG. 6. Schematic of the Landau level spectra of a bipolar array in graphene under
an external magnetic field for equal well and barrier heights (|Up| = |Uw|) in panel
(a) and unequal well and barrier heights (|Us| > |Uw|) in panel (b). The total den-
sity of states has been sketched in gray, which is the sum of the contributions
from the massive (blue, Landau level index n) and massless (red, Landau level
index n¢) Dirac cones. The energy axis is normalized according to the effective
Fermi velocity of the central massless Dirac cone (¥ ) so that the n, = —1,0, and
1 Landau level energies take on the values -2 hve/lg,0, and V2 hve/lg,
where g = / N/eB is the magnetic length. In panel (a), the satellite Dirac cones
are non-tilted at ¢ = 0 and have the same offset energy as the central cone, while
in panel (b), the satellite cones are tilted and are offset from the central cone,
causing overlap of LLs. This figure has been plotted for arbitrary field strength and
Dirac cone parameters, and each Landau level has been modeled as a Lorentzian
with a finite width.
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for LL index || > 1, where for the bipolar array # = v/T and

A=V1-1¢* with each LL having 8-fold degeneracy from each
graphene valley (s = 1), satellite (s = +1), and spin. It should be
noted that in the presence of a gap, the zeroth LL splits into sub-
levels at the band edges Ey+ = AE;/2 (when s = 1) or Ey- = —-AE,/2
(when s = —1) such that the degeneracy of each sub-level is half the
other LLs (see Appendix D). We note that we have thus far assumed
an infinitely repeating superlattice in a magnetic field. However,
realistic systems are finite, resulting in edge states (for 8-Pmmn
borophene, see, e.g., Ref. 69). Although we do not explore termi-
nation effects in this paper, we comment that it is an interesting
avenue of future study. It is also noted that much like polyacetylene
(treated via the Su-Schrieffer-Heeger model”’), one could consider
terminating the superlattice on or through the middle of a unit cell
(leaving an isolated well/barrier at either edge of the system).

By modifying the applied voltages of the electrostatic superlat-
tice, the tilt (¢) and bandgap (Eg) of the gapped satellite Dirac cones
can be tuned. We note that the offset energy of the satellite Dirac
cones is different from the offset energy of the central Dirac cone.
Varying the applied gate voltages of the bipolar array tunes the offset
energies between the gapless and gapped LL spectra; this is illus-
trated schematically in Fig. 6. These theoretical results are consistent
with a previous numerical study into the formation of Landau levels
in graphene superlattices (see Ref. 55). In turn, this allows designer
LL spectra via Dirac cone engineering, which would be measur-
able in magneto-resistance experiments or through magneto-optic
transitions.

VI. CONCLUSION

Research into the physics of gapless and gapped tilted Dirac
cone materials” ** is in its infancy, having been inspired by the
prediction of tilted Dirac cones in 8-Pmmn borophene, a boron
monolayer. In each of these works, the tilt parameter takes on a fixed
value that is assumed to be predetermined by rigid lattice geometries.
In this work, we propose a feasible method to engineer gapped and
tilted Dirac cones in a lateral graphene superlattice. In stark contrast
to crystalline atomic monolayers, the electronic band structure of a
graphene superlattice can be modified by varying the applied voltage
profile—this provides a practical means to control the tilt parameter
and bandgap of Dirac cones.

While this work has been focused on the study of one-
dimensional lateral superlattices in graphene, we note that two-
dimensional graphene superlattices” may also provide a viable
platform to realize designer gapped and tilted Dirac cones. It is also
noted that although in this section we have considered lateral super-
lattices applied to graphene, it may also be possible to consider other
superlattice geometries made possible through strain,”*”'"* dop-
ingfI or electromagnetic fields.””® Furthermore, we need not limit
our substrate to graphene; superlattices could also be considered
for other two-dimensional systems such as bilayer graphene,”® sil-
icene,”” or eventually, two-dimensional materials that already host
tilted Dirac cones in the electronic band structure, i.e., 8-Pmmn
borophene.”*”* It should also be noted that applying strain to the
underlying crystallographic lattice, e.g., graphene,®’ gapped Dirac

22
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The tilted and gapped Dirac cones within a lateral
graphene superlattice can be engineered to give desirable device
characteristics—as examples of this, we discussed tunable THz
applications and designer Landau level spectra. It was shown that
a lateral graphene superlattice can be engineered to absorb THz
photons within a narrow bandwidth. This bandwidth can be tuned
post-fabrication by varying the voltage profile of the superlattice.
We hope that this work will encourage the use of lateral graphene
bipolar superlattices in the design of novel THz devices.
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APPENDIX A: ZERO-ENERGY STATES OF QUANTUM
WELLS AND BARRIERS IN GRAPHENE

In this appendix, we present expressions for zero-energy
states for quantum wells and barriers in graphene. Owing to
the symmetry of the confining potential U(x) = U(-x), it is
convenient to rewrite Eq. (1) in the symmetrized basis, i.e., |y(x))
= [y (x)y2(x)]",  where yi(x) = [ya(x) + iys(x)]/v2 and

v2(x) = [ya(x) - iys(x)]/\/2. The spinor components satisfy the
following simultaneous equations:

cone materials,”’ or 8-Pmmn borophene,”*’ would add further U(x)-E
tools to modify the electronic band structure. [ ve scky ]Wl (%) + 0y (x) = 0 (AD)
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and

—8x1//1(x)+[ U )

+ szy] Y (x) = 0. (A2)
In conjunction with Eq. (2), we define three regions of the square
potential: I (x < —W/2), Il (-W/2 <x < W/2), and III (x > W/2).
The total wavefunction is obtained by solving Egs. (A1) and (A2) in
each region of the potential and matching the spinor components at
the boundaries. We note that for the case of graphene, in contrast to
traditional free-electron quantum well problems, it is not necessary
to match the derivative of the spinor components.

For a quantum barrier with height 7/2 < UyW /hwg < 37/2,
there are two zero-energy solutions in each graphene valley
(sk = £1)—one has a positive wavevector and the other has a nega-
tive wavevector k, = s|K,| with s = £1. It can be seen from Eqs. (A1)
and (A2) that interchanging the graphene valley index is mathemat-
ically equivalent to changing the sign of the wavevector along the
guiding potential. We first solve for a quantum barrier in graphene
for the case sks = 1, where the zero-energy wavefunction takes the
form

) = LS gin <KW/2)( ) Kk (a3)
() = [“‘n (v e (Kx)] (Ad)

and

() = e sin (1”6W/2)(_11)e%|x’ "

where the effective wavevector in the barrier is

K-\ ui- (hveK,)* (A6)
hVF

and the normalization factor is

_ UKW+ =
N= 2K sec (KW/2). (A7)

The zero-energy states occur at wavevector s|K,|, where |K,| is the
solution to the transcendental equation,

K = -|K,| tan (KW). (A8)

Here, we have centered the barrier at the coordinate x = 0; how-
ever, the barrier can be offset by setting x — x — xo. We can see from
Egs. (A1) and (A2) that a wavefunction for the case sks = -1 can
be obtained from the sks = 1 wavefunction through the operation
0x|y,,,(=x)). It can also be seen from Egs. (A1) and (A2) that the
zero-energy (E = 0) wavefunction for a well can be related to that of
a barrier |y, (x)) = ox|y,(x)) provided the well depth is equal to the
barrier height U, = -U,, = U,.

We can obtain the group velocity of the well and barrier dis-
persions at the crossing point by calculating the expectation of the
velocity operator v/, = {05 (x)| 9|5 (x))dx, where in the sym-
metrized basis the velocity operator is defined as v = —sgvgo;, where

pubs.aip.org/aip/apq

0. is the third Pauli matrix. Performing this calculation yields the
barrier and well group velocities v, = —v;, = vy, where

5‘-”123|11)’|
= —, A9
Vo lf() ( )

APPENDIX B: TRANSFER MATRIX METHOD
FOR THE BIPOLAR ARRAY IN GRAPHENE

To support the theoretical predictions of our work, we pro-
vide a transfer matrix model that can be used to calculate the
electronic band structure of the bipolar array in graphene numeri-
cally. The employed transfer matrix model is based on earlier works
used to derive the electronic band structure of simpler graphene
superlattices.”””* The general theory of the transfer matrix method
for Dirac systems is discussed in Ref. 84.

The bipolar array has a superlattice unit cell consisting of four
regions (n =1 to 4) with potential (U,) between the coordinates
Xn-1 < x < x,. For consistency with the theoretical model, the poten-
tials take the values U; = Uy, Us = Uy, and U, = Uy = 0, while the
boundaries take the values xo = -W/2, x1 = W/2, x, =a- W/2,
x3 =a+ W/2, and x4 = L — W/2. The wavefunction in region » in
unit cell j can be found by solving Eq. (1) fora constant potential Uy,

yielding |y (x)) = Q (x)(oc,(,j),ﬂ,(lj)) where ! and ﬁ@ are the
wavefunction components and T is the transpose operator. For the

case |Uy, — E| > hvglk,|, we obtain guided mode solutions encoded by
the matrix,

etknx e—tknx
Q,,(x) = o - (Bl)
An)+e An,fe

where the effective wavevector is

1 N2 2
_hTF\/(U,, E)’ - (hveky) (B2)

and
E-U,

e = s (£ — iky)

(B3)

which are defined for a single graphene valley (sk = 1) up to a nor-
malization factor. We note that for the case |U, — E| < hvg|k,|, the
wavefunction decays—this is achieved by replacing kn with i, in
Egs. (B1)-(B3), where

- 1
R = hTF\/ (hveky)? - (Un - E). (B4)

To obtain the total wavefunction of the bipolar array, we
sequentially satisfy each boundary condition in the superlattice
potential. By matching all boundary conditions within a single unit
cell, we can relate the wavefunction in unit cell j to the wavefunction
in the neighboring unit cell j + 1,

agj) (J+1)
g )= ﬁ<;+1> (BS)
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where the transfer matrix is defined as

T= I:ﬁ Q;:l(xn)ﬂnﬂ(xn)]QZI(XAl)Ql(XQ). (B6)

n=1

In conjunction with the theoretical model [see Eq. (3)], this
superlattice unit cell is repeated N times, leading to the expression,

@) (j+N)
(a%j)) = TN(‘X%ﬁN))- (B7)

1 1
Due to the translational invariance of the superlattice, the spinor
components (xf]) and ﬁfj) are equivalent to (xfﬁN) and [3§]+N),
respectively. This places a constraint on the transfer matrix
(TY = 1), yielding the eigenvalues e**’™~. For the case of an infinite
superlattice (N — o0), we label the continuum of eigenvalues e*™!
with the superlattice wavevector (k. = 27mj/NL). As discussed in
Ref. 84, the electronic band structure is found by searching for
energy (E) and wavevector (k = (kx,k,)) values that satisfy the
condition

2 cos (kyL) = Tr (T). (B8)

APPENDIX C: TIGHT-BINDING HOPPING PARAMETERS
AND ESTIMATION OF DIRAC CONE BANDGAP

In the case of the bipolar array that lacks a reflection plane in the
superlattice, gapped Dirac cones appear. The bandgap of these Dirac
cones is given by twice the magnitude of the sum of the intra- and
inter-cell hopping integrals. For the case of equal well depth and bar-
rier height (U, = -U,, = Uy), the well and barrier dispersions cross
at zero-energy. In this case, we can obtain analytic expressions for
Vintra a0 ¥, DY utilizing the analytic zero-energy solutions to the
square well and barrier in graphene provided in Appendix A.

We will begin by calculating the intra-cell hopping parameter
for the specific case of sks = 1. Without loss of generality, we specify
the unit cell (= 0) and substitute the superlattice Hamiltonian H
[see Eq. (3)] into Eq. (8). Removing all negligible terms yields

yous = | ((IU) yi(x - ) d

+[:(wh(x)|HG+Uw(x—a)|1//W(x—a))dx. 1)

We note that the term [Hg + Un(x — a)]|yw(x — a)) is the eigen-
value problem given in Eq. (1). As the wavefunction |y, (x - a))
corresponds to a zero-energy state, this term vanishes. Inputting the
definition for a quantum barrier [defined through Eq. (2)] yields the
simplified expression for the hopping parameter,

w/2
v = U [ (llnx-a)dx (@)

Inputting the analytic solutions for the zero-energy states [see
Egs. (A3)-(A8) and |y, (x)) = ox|y,(x))] into Eq. (C2) and solving
the resultant integral yields an expression for the intra-cell hopping
parameter y,... = ¥, (when sgs = 1), where

pubs.aip.org/aip/apq

- ?3v13=|Ky|K2 SRl (W=a) (C3)
Uy (1+[K|W)

Carrying out the same procedure for the inter-cell hop-
ping parameter yields 7y, =y, (when sks=1), where
y2=—y1 exp[|K)|(2a—L)]. For the alternate case sgs=-1,
the well and barrier wavefunctions are modified as .|y, (-x))
(see Appendix A). Substituting this transformation into Egs. (8) and
(9) reveals that flipping the sign of sks is mathematically equivalent
to switching the well and barrier positions. Thus, for the symmetric
case (a =L/2), switching the sign of sks simply interchanges the
inter- and intra-cell hopping parameters. In general, when a # L/2,
we obtain y, = sksy, and y,. ., = Sksy,. We can then obtain the
local bandgap of the gapped Dirac cones through |Eg| = 2|y1 + 2|,
which yields the solution given in Eq. (14) of the main text.

APPENDIX D: LANDAU LEVEL WAVEFUNCTIONS
IN MASSIVE TILTED DIRAC CONES

In the presence of a magnetic field, we substitute the vector
potential into the Hamiltonian given in Eq. (13) using the iden-
tity § — q + eA/h. Here, the wavevector operators take on the value
{xy = —iOxy, while the vector potential A = —Bxy describes a mag-
netic field normally incident on the system. In this gauge, the
Hamiltonian is solved by the wavefunction |¥,(x, )} = ¢ |¥,(x)),
resulting in the eigenvalue problem J%|¥,(x)) = Eq[¥,(x)) with

N E
I = snggaz + sv(hqy — eBx)(tl + 0y) — isKsthagcfx, (D1)
X

where n is the LL index, E, is the Landau level energy, and |¥,(x))
is the associated LL wavefunction.

While this problem can be solved using a generalized chiral
operator,”® we solve it using an approach previously outlined for
gapless tilted Dirac cones in Ref. 85, which we have adapted for
the gapped case. For LLs with index |n| > 1, the energy spectra are
defined in Eq. (17), while the wavefunctions take the form

X2

W, (x)) = &

|:(25£n +1gg) ( 1;;\)}1'”' (Xn)

- 2i\/ 2/\3|I’l‘(1 ilf/\)h|n|—l(Xn):| (D2)

for sk = 1. In these expressions, for brevity, we have utilized dimen-
sionless variables for the energy spectra ¢, = E,lg/hv and bandgap
& = Eglg/hv, which are defined through the magnetic length
Iz = \/h/eB. In addition, we have utilized the scaled and translated
coordinates,

Ig  sent
Xy = V[ 2o - 22 =) D3
(lBﬁ VT /\2) 0

the normalization factor,

Nu = 20+ )/ (2580 + Aeg)? + 81, (D4)
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and the normalized Hermite polynomials,

A\ 1
hm(X,,):(ﬁ) () (D5)

where H,,() are the Hermite polynomials. For the second graphene
valley (sx = -1), the LL wavefunction takes the form —ioy|¥y).
As discussed in the main text, each LL with index |n| > 1 has 8-
fold degeneracy arising from spin, graphene valley (sx = +1), and
satellite Dirac cones (s = +1).

As discussed in the main text, there are two zeroth LLs that
sit at the band edge (Ey= = +EgA/2). The n = 0% LL only exists in
satellite Dirac cones at positive wavevectors along the guiding poten-
tial (s = 1), while the n = 0 LL only exists at negative wavevectors
(s=-1). As a consequence, these zeroth LLs have half the degen-
eracy of the other levels, meaning that if the gap were to close, they
would combine into a single zero-energy LL with degeneracy equal
to all other levels. The wavefunctions of the zeroth LL can be written

as
L ((AY (A
[¥o: (%)) = SO +/\)IB(TTT) ( i )e (D6)

for sx = 1 or —ioy|'¥+ ) in the other graphene valley sk = —1.
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ABSTRACT

This study investigates the electronic structure of the vanadium-based kagome metal YVSne using magnetoresistance (MR) and torque mag-
netometry. The MR exhibits a nearly linear, non-saturating behavior, increasing by up to 55% at 35 T but shows no evidence of Shubnikov-de
Haas oscillations. In contrast, the torque signal, measured up to 41.5 T, reveals clear de Haas-van Alphen (dHvA) oscillations over a wide
frequency range, from a low frequency of F, ~20 T to high frequencies between 8 and 10 kT. Angular and temperature-dependent dHvA
measurements were performed to probe the Fermi surface parameters of YV¢Sne. The dHVA frequencies display weak angular dependence,
and the effective mass, determined by fitting the temperature-dependent data to the Lifshitz-Kosevich formula, is 0.097 m,, where m, repre-
sents the free electron mass. To complement the experimental findings, we computed the electronic band structure and Fermi surface using
density functional theory. The calculations reveal several notable features, including multiple Dirac points near the Fermi level, flatbands, and
Van Hove singularities. Two bands cross the Fermi level, contributing to the Fermi surface, with theoretical frequencies matching well with
the observed dHvA frequencies. These combined experimental and theoretical insights enhance our understanding of the electronic structure
of YV6Sne and provide a valuable framework for studying other vanadium- and titanium-based kagome materials.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0252563

I. INTRODUCTION ~0.3-3 K, CDW order near Tcpw ~80-110 K, and a Van Hove

singularity, among other intriguing features.” '’ Electronic band

1S'¥2:10 520T YdIe ¥

Recently, kagome materials, with atomic arrangements resem-
bling a corner-sharing kagome lattice, have attracted significant
attention in condensed matter physics due to their fascinating
properties, such as non-trivial topology, flatbands, charge-density
wave (CDW), and superconductivity. * A prototypical example
is AV3Sbs (A = K, Rb, and Cs), also known as the “135” fam-
ily, which forms a hexagonal lattice of V atoms coordinated by Sb
atoms.” © AV3Sbs exhibits superconductivity with T, ranging from

structure calculations reveal several remarkable properties, includ-
ing the presence of flatbands, Van Hove singularity points, Dirac
points near the Fermi level, and non-trivial Z, topological invari-
ants. Recent quantum oscillation studies'' *' on AV;Sbs have con-
firmed the non-trivial band topology and uncovered significant
reconstruction of the Fermi surface in the CDW phase.

Another class of kagome compounds, RMsXs, known as
the 166 family, has been discovered, where R represents alkali,
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alkaline earth, or rare earth metals (e.g., Li, Mg, Yb, Sm, Gd,
etc.); M represents transition metals (e.g., Co, Cr, Mn, V, Ni, etc.);
and X represents Si, Ge, or Sn.”” > This family crystallizes in the
MgFesGes prototype structure, exhibits significant chemical diver-
sity, and, therefore, offers a wide range of functionalities. Several
interesting physical phenomena have already been observed in this
family, for example, a large anomalous Hall effect in LiMneSns,
non-trivial topological properties in GdVSns,”*** Chern topo-
logical magnetism in TbMneSne,” competing magnetic phases in
YMneSne,”” and more. Notably, within this family, ScVsSng is the
only member to exhibit a CDW transition at Tcpw = 92 K0!
However, no superconductivity has been observed in ScVSne under
either ambient conditions or high pressures up to 11 GPa.”> We
recently reported on the electronic structure of ScV¢Sng, studied
using high-field torque measurements®’ and density functional the-
ory (DFT), which probed its electronic bands and Fermi surface,
uncovering its non-trivial topology.

This work focuses on YVSneg, a member of the 166 kagome
family. Figure 1(a) shows the unit cell (upper panel) and the
kagome lattice (bottom panel) of vanadium atoms in YVSne. Pre-
vious electrical transport and magnetic studies by Pokharel ef al.*
have shown that YVSne does not exhibit a magnetic transition or
CDW order down to 2 K. Recent studies® suggest that the CDW
phase in ScVsSne originates from a structural instability caused by
tin-tin bond modulation in the rare-earth-tin chains. This instabil-
ity appears to be driven by the undersized scandium atoms, which
allow the scandium-tin chains to rattle within the larger V-Sn
framework. In contrast, yttrium is too large, preventing the rat-
tling of the rare-earth-tin chain and inhibiting the development of a
CDW phase in YVSne. DFT studies’” on this material have revealed
a non-trivial band topology, confirmed by calculating the Z, topo-
logical invariants. Here, we have investigated the electronic structure
of YVsSns by employing high-field torque measurements and DFT
calculations. Torque measurements under applied fields of 41.5 T
revealed well-defined de Haas-van Alphen (dHvA) oscillations with
frequencies reaching up to 10 kT. DFT calculations of the electronic
band structure show multiple Dirac points, Van Hove singularities,
and flatbands near the Fermi level. A comparison of the theoreti-
cal frequencies derived from DFT with the experimental frequencies
demonstrates good agreement.

pubs.aip.org/aip/apq

Il. EXPERIMENTAL AND COMPUTATIONAL DETAILS

High-quality single crystals of YVsSne were synthesized via
the tin flux method following the recipe in Refs. 34 and 35. Ele-
mental Y (Alfa Aesar, 99.9%), V (Alfa Aesar, 99.8%), and Sn (Alfa
Aesar, 99.9999%) were put in an alumina Canfield crucible set and
then sealed in silica ampoules filled with about 0.2 atm argon. The
ampoules were heated to 1150 °C over 12 h, held for 15 h, and
cooled to 780 °C over 300 h. To remove the tin flux, the ampoules
were centrifuged at 780 °C. To remove the remaining tin on the sur-
face, the crystals were etched in an aqueous 10 wt. % HCI solution
for 12-36 h. Temperature-dependent resistivity measurements were
carried out in a physical property measurement system (Quantum
Design) using the four-probe technique. Magnetoresistance (MR)
and torque measurements with maximum applied magnetic fields
up to 35 and 41.5 T, respectively, were carried out at the National
High Magnetic Field Laboratory (NHMFL), Tallahassee, FL. Torque
measurements were conducted using a miniature piezoresistive can-
tilever. A tiny single crystal of YVsSne was selected and attached
to the cantilever arm using vacuum grease and then mounted on a
rotating platform of the measurement probe. The probe was slowly
cooled down to a base temperature of 0.5 K. Two resistive ele-
ments on the cantilever were balanced at the base temperature before
taking the field dependent and temperature dependent torque mea-
surements. Magnetic fields were swept at each fixed temperature at
arate of 1.5 T/min.

Electronic structures were calculated using density functional
theory (DFT) with the full-potential linearized augmented plane
wave (FP-LAPW) method, as implemented in the WIEN2k code.*
The exchange-correlation energies were treated using the stan-
dard generalized gradient approximation (PBE-GGA).”” Internal
atomic coordinates were optimized in the scalar relativistic mode
until the forces on individual atoms were reduced to below 20
meV/A. Spin-orbit coupling (SOC) was incorporated through the
second variational step.”® The energy convergence criterion for self-
consistent calculations was set to 10™* Ry. The atomic sphere radii
(RMT) were chosen as 2.50 bohrs for Y, V, and Sn. Self-consistent
calculations utilized a grid of 800 k-points across the full Brillouin
zone, while a denser k-point mesh of 5000 points was employed for
Fermi surface computations.

5 60
100F ~

~ S
g < 5 FIG. 1. (a) Unit cell (upper panel) and the
] 75| = 45¢ top view (lower panel) of YVgSng, illus-
< %0700 200 300 R trating the kagome network formed by
5 T(K) X V' atoms. (b) Temperature dependence
i 501 —0T x 301 of resistivity for a YVsSng single crystal
&~ —9T = at 0 and 9 T. Inset: Magnetoresistance
= (MR) vs temperature plot. (c) MR plot for
B 25¢ 15¢ a YVgSng single crystal with the mag-
Kagome layer [~ RRR =11 (b) netic field applied along the c-axis at
oL ‘ ‘ ‘ ol @ T = 15 K. The MR reaches up to 55%,
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I1l. RESULTS AND DISCUSSION

Figure 1(b) shows the electrical resistivity, p,, as a function of
temperature. As seen in the graph, the resistivity decreases with tem-
perature, indicating typical metallic behavior. The residual resistivity
ratio (RRR), calculated by dividing p_ . at 300 K by its value at 2 K, is
11, indicating the high quality of our YV¢Sns crystals. Upon apply-
ing a magnetic field of 9 T, the resistivity increases, as shown by the
red curve. The p, (T exhibits a similar behavior to that observed in
another 166 family member, LuVsSne.” The inset displays the mag-
netoresistance (MR), defined as MR = [p, (9 T) - p, (0)]/p,,(0),
wherep_ (9 T)and p, (0) represent the resistivity valuesat 9and 0 T,
respectively. As shown in the inset, the MR reaches as high as 15% at
2 K and decreases to nearly zero at 300 K. In order to understand the
effect of a magnetic field on electrical transport, we measured the
electrical resistance as a function of the magnetic field. Figure 1(c)
shows the MR for YVsSns with the magnetic field applied along the
c-axisat T = 1.5 K. As seen in the graph, the MR increases nearly lin-
early with the applied field, without any indication of saturation. At
35 T, the MR reaches 55%, but no Shubnikov-de Haas oscillations
are observed. However, observing quantum oscillations is essential
to probe the Fermi surface of YV4Sne. Therefore, we proceed with
an alternative measurement technique: torque magnetometry.

Figure 2(a) shows the 7 vs field plot at two different tilt angles,
0 = -7° and -21°. Here, 0 is defined as the angle between the mag-
netic field and the c-axis of the sample, as depicted in the upper
inset of Fig. 2(a). The dHVA oscillations are clearly observed at both
angles above 5 T. In addition to the low-frequency signal, there is
an additional high-frequency signal at high magnetic fields above
30 T. The high-frequency signal is more prominent at 6 = —7° com-
pared to 6 = —21°, as indicated by the dotted circle. This is clearer
in the zoomed-in plot of the high-field region, shown in the lower
inset. To extract the oscillation frequencies, we subtracted a smooth
polynomial background from the torque data and then performed a
fast Fourier transform (FFT). Figure 2(b) shows the Fourier trans-
form of the torque data presented in Fig. 2(a). The low-frequency
component, F, = 25 T, is present at both angles, as shown in the

(a

N

Torque T (arb. units)

39 40 41
1 1 1 L

0 10 20 30 40
Magnetic Field H (T)
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inset. The torque signal at 6 = —7° exhibits additional frequencies
at 180, 1400, and 8800 T. In contrast, at 6 = —21°, these frequencies
are completely overshadowed by the dominant lower frequency, Fa.
Due to the low resolution of the high-frequency signal, it is difficult
to extract from the torque data at some 6 values. However, the lower
frequency F, is consistently observed at all measured angles. We
observed a similar behavior in torque measurements™ of another
166 compound, ScVsSng, where low frequencies are dominant and
present at all 6 values, while high frequencies are weak and only
emerge at very high magnetic fields. This will be discussed in detail
later.

In order to calculate the effective mass of charge carriers,
we carried out the torque measurement at different temperatures.
Figure 3(a) shows the temperature dependent torque data mea-
sured at 6 = 28°. As seen in the graph, the dHvA oscillations are
pronounced at low temperatures and gradually disappear at higher
temperatures. At 35 K, the quantum oscillations are not visible. At
this tilt angle, the lower frequency F, changes to 18 T, and there
is no interference from the high frequency signals, as seen in the
frequency spectrum in Fig. 3(b). The amplitude of the frequency
decreases at higher temperatures, and this behavior can be described
by the Lifshitz-Kosevich (LK) theory.”” According to the LK theory,
the temperature dependent quantum oscillations in torque is given
by

A(T/H)

Ar(TH) e o DT

(1)

with Ap(H) = Zig‘ﬂm*% and A(T/H) = %m*% Here, Tp, kg,
and m” represent the Dingle temperature, Boltzmann’s constant,
and effective mass of the charge carriers, respectively. The first
term is the Dingle factor, which describes the attenuation of the
oscillations with decreasing field H. The second term explains the
weakening of the oscillations at higher temperatures.

The inset in Fig. 3(b) shows the FFT amplitude at different

temperatures. The scattered squares represent the FFT amplitude,

25T 25T

180T
YVSng '

0 150 300 450
F(T)

FFT Amplitude (arb. units)

Frequency F (kT)
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FIG. 2. (a) Torque (7) of a YVsSn single crystal measured up to 41.5 T at 6 = —7° and —21° and T = 0.5 K. The de Haas-van Alphen (dHvA) oscillations are observed
at both angles above 5 T. A high-frequency signal is apparent at 6 = —7°, as indicated by the dotted circle. Upper inset: A schematic diagram defining the tilt angle, 6.
Lower inset: Zoomed-in torque data in the high-field region. The high-frequency signal is prominent at 6 = —7°, although it is observed at both angles, —7° and —21°. (b)
Frequency spectrum of the dHVA oscillations shown in (a). The low-frequency peak at F, = 25 T is present at both angles, while three additional frequencies, 180, 1400, and
8800 T, are observed only at 6 = —7°. Inset: A zoomed-in view of the frequency spectrum highlighting the lower frequencies.

APL Quantum 2, 016118 (2025); doi: 10.1063/5.0252563 2,016118-3

© Author(s) 2025


https://pubs.aip.org/aip/apq

APL Quantum

ARTICLE

pubs.aip.org/aip/apq

E F,=18T § (‘Jg m*=0.097m,

@ g f 206 FIG. 3. Torque data of YVgSn6 at dif-
= S : g: ferent temperatures. The de Haas-van
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L L L L . points, and the solid curve is the best fit

0 10 20 30 40 1 10 100 1000 using the Lifshitz-Kosevich formula.
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while the solid red curve represents the best-fit curve to the data
using the LK formula [Eq. (1)]. As shown in the graph, the LK for-
mula explains the temperature-dependent behavior of the frequency.
From the best fit, we determined m* = 0.097 m,, where m, is the rest
mass of an electron. This m* is comparable to the effective mass of
other kagome systems"”"’ " reported previously.

The angular dependence of quantum oscillations provides
information about the shape, size, and dimensionality of the Fermi
surface.””**** To explore this, we conducted torque measurements
at various tilt angles. In Fig. 4(a), the torque data for YVsSns mea-
sured at different 0 values are shown. As shown in Fig. 4(a), there are
clearly more than two periods, representing multiple quantum oscil-
lation frequencies, and they seem to vary with 6 values. Furthermore,
the dHVA oscillations are present even if the magnetic field is per-
pendicular to the sample surface, indicating the three-dimensional
nature of the Fermi surface. We have carried out background sub-
traction from the torque signal and determined the frequency values
at different 6 points, as presented in Fig. 4(b). For comparison
purposes, we have also included possible theoretical frequencies
computed by using DFT. We will discuss it in detail later.

From our high-field data, we observed a prominent peak at Fy,
which appears to remain nearly constant while rotating the sam-
ple. In order to understand its topological feature, we calculated the

Berry phase (®g) of the Fermi pocket of F, using the Landau level
(LL) fan plot, as shown in Fig. S1 of the supplementary material.
For a topologically non-trivial (or trivial) system, the ®g value is 7
(or zero).””"” To avoid possible interference from other frequency
signals, we employed the FFT bandpass filter approach’"*""*"" to
extract the oscillations corresponding to the particular frequency.
When constructing this diagram, we assigned the LL index to
the minima and maxima positions as (N — i) and (N + i),
respectively.”** By performing a linear extrapolation of the data,
represented by the dashed line, we derived an intercept No = 0.18 +
0.02, corresponding to ®p = (0.36 + 0.04)7. Although ®g is not
exactly 7, its non-zero value indicates the non-trivial topology of
the o pocket. Furthermore, the slope value (18.1 + 0.3) T closely
matches the F, value of 18 T in Fig. 3(b), validating the preci-
sion of the linear extrapolation in determining the intercept (and
consequently the ®g value). Furthermore, the bandpass filter’s effec-
tiveness in retaining the original dHvA oscillation signal without
significant error is affirmed. A non-trivial @ has been reported
for the sister compound ScVeSne using quantum oscillation
studies.”"

To better understand the experimental observations, we com-
puted the electronic band structure and Fermi surface of YVsSng.
Figure 5 illustrates the electronic band structures of YV Sns (a) with-

1S'¥2:10 520T YdIe ¥

100000
(@) (b)
10000 adand, . o, BirA8 aa8
@ . A FIG. 4. (a) Angle-dependent torque sig-
‘= = nal for YVsSns. The period, and thus
= ~ [ o> o At
S B~ 1000F o Yo O >0 the frequency, of quantum oscillations
5 > 2 0,s? . ;,:Eo - varies with the tilt angle 6. (b) Compari-
g :;)},4 5 0000 0w ReveLiGoo Cer son of theoretical frequencies from band
8 |0 2 100} NS 111 1440 86 and band 87 with experimental quan-
T e & *5 00" ErEnsy tum oscillation frequencies. Band 86
E _iio = 0o? 5“5”6"?5'59..0.(,, frequencies align well with experimen-
s 10 © tal values below 1000 T, while higher
20 frequencies, around 10 kT, correspond
e ©, 4, o dHvA; » Band 86, ~ Band 87 closely to those from band 87.
0 10 20 30 40 —-40 =20 0 20 40 60 &0 100
Magnetic Field H (T) Tilt Angle 6 (degree)

APL Quantum 2, 016118 (2025); doi: 10.1063/5.0252563
© Author(s) 2025

2,016118-4


https://pubs.aip.org/aip/apq
https://doi.org/10.60893/figshare.aip.c.7645025

APL Quantum ARTICLE

pubs.aip.org/aip/apq

@' Non-50C ([ ® !

0.5

S S
>y U
uﬁ =i
m
-0.5

FIG. 5. Electronic band structure of pris-
tine YVsSng with (a) non-SOC and (b)
SOC. The SOC is oriented along the
[001] direction, corresponding to the out-
of-plane axis of the material. The flat-
band is denoted by the shaded purple
area, and the Dirac points near the Fermi
level are indicated by the dotted circles.
Two bands, indicated by red and green
colors, cross the Fermi level. The dashed
arrows represent the Van Hove singular-
ities. Inset: first Brillouin zone showing
high-symmetry points.

out and (b) with the inclusion of spin-orbit coupling (SOC). The
inset in Fig. 5(a) shows the high-symmetry points in the first Bril-
louin zone. As shown in Fig. 5(a), the electronic bands exhibit several
intriguing features, including multiple Dirac points near the Fermi
level (highlighted by the dotted circles), a flatband (shaded area), and
multiple Van Hove singularities (indicated by the dashed arrows).
Orbital-resolved electronic band structure provides detailed insights
into the contributions of specific atomic orbitals to the electronic
bands in a material. This information is critical for understanding
the electronic, magnetic, and optical properties of materials. There-
fore, we computed the orbital-resolved electronic bands of YVSns,
as presented in Fig. S2 of the supplementary material. As shown in
the graph, the electronic bands near the Fermi level are primarily
dominated by the vanadium 3d orbitals. Moreover, features such as
Dirac points, Van Hove singularities, and flatbands arise from the
vanadium 3d and tin 5p orbitals. Notably, there appears to be no
contribution from the yttrium 4d orbitals to the electronic bands of
YV68n6.

Here, we have aligned the SOC along the [001] direction, cor-
responding to the out-of-plane axis of the material. To investigate
the magnetic anisotropy, we calculated the effect of SOC along vari-
ous directions, including [001], [100], [110], and [111]. Our analysis
revealed that [110] is the easy axis for magnetization, while [001]
is the hard axis. By computing the total energy differences between
magnetization orientations along different crystallographic direc-
tions, we determined the magnetic anisotropy energy to be 0.23 meV
for YVsSns.

Our electronic band structure is consistent with those calcu-
lated for other 166 kagome families.”>”""*"*" With the inclusion
of SOC, the electronic bands slightly shift (either up or down), as
shown in Fig. 5(b). Here, the SOC is oriented along the [001] direc-
tion, corresponding to the out-of-plane axis of the material. While
some of the Dirac points develop gaps due to the inclusion of SOC,
the flatbands and Van Hove singularity points remain nearly intact.
For example, the previously gapless Dirac point along the K-T and
A-L directions develops a gap as high as ~50 meV in the presence
of SOC. There are two bands: band 86 and band 87 cross the Fermi

level, as indicated by the green and red colors, respectively. These
bands contribute to the Fermi surface of YVsSns.

Figure 6 shows the band-resolved Fermi surface of YVsSns. The
Fermi surface of band 86 exhibits a chain-like feature at the Brillouin
zone boundary, along with small pockets at the edge of the Bril-
louin zone. For band 87, there is a deformed, cylinder-like feature
with a belly in the middle. The final inset represents the combined
Fermi surface sheets from both bands. To understand the effect
of SOC, we computed the Fermi surface of YVsSne including the
SOC effect, as shown in Fig. S3 of the supplementary material. It is
found that the Fermi surface remains nearly unchanged. According
to Onsager’s relation,””***>"" the frequency (F) of quantum oscil-
lations is directly proportional to the cross-sectional area (Ar) of
the Fermi surface as F = h/(27e) Ag*, where  is the reduced Planck
constant and e is the charge of an electron. Therefore, we can calcu-
late possible theoretical frequencies by measuring the cross-sectional
area of the Fermi surface.

We employed the SKEAF code’* for computing possible the-
oretical frequencies from the Fermi pockets derived from band 86
and band 87. The calculated angular dependence of frequencies
from different bands is plotted in Fig. 4(b) alongside the experi-
mental data. As observed in the figure, frequencies derived from

Band 86 Band 87

Merged FS

FIG. 6. Band resolved Fermi surface (FS) of YVgSng. Two bands: band 86 and
band 87 contribute to the FS. The last inset is the combined FS sheets from both
bands.
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both bands 86 and 87 describe the behavior of F,. Low frequencies
below 1000 T, observed in dHvA oscillations, are in good agreement
with the theoretical frequencies computed from band 86. Similarly,
the high-frequency signal near 10 kT is in good agreement with
those computed from band 87. It is important to note that, although
the frequency values are comparable, the angular dependence of
the theoretical frequency derived from band 87 shows an upward
trend, especially above 60°, which is not clearly observed in the
experimental data. The high frequency signal appears in very high
fields (around 35 T) and is dominated by the low frequency signal,
reducing its resolution [Figs. 4(a) and 2(a) and 2(b)]. This makes it
challenging to track the angular dependence precisely. However, the
angular dependence of the low frequencies is well captured by the
frequencies derived from band 86. There are also possible frequen-
cies below 100 T, but we did not observe these frequencies in our
dHvVA oscillation data. However, quantum oscillation experiments
are not uncommon to miss higher frequencies.’

55,56

IV. SUMMARY

Despite the chemical diversity of 166 compounds, there are
limited studies™*"***"""*% that use quantum oscillations to under-
stand their electronic properties. Moreover, most of these studies
report the presence of low-frequency signals (below 100 T).*"”"**
For instance, Ma et al. performed Shubnikov-de Haas (SdH) oscilla-
tions in RMngSne (R = Gd-Tm, Lu) and observed frequencies below
100 T. This paper focuses on the detailed electrical transport, mag-
netotransport, and torque magnetometry studies of YVsSns with
applied fields up to 41.5 T. Our electrical transport measurement
shows that this material demonstrates a good metallic behavior. To
investigate the magnetotransport properties, we measured magne-
toresistance (MR) with the applied fields up to 35 T. We found nearly
a linearly varying and non-saturating MR with the value reaching
as high as 55%; however, there is no clear sign of SdH oscillations
in MR data. Therefore, we proceeded with another measurement
technique: torque magnetometry. Our torque data, measured up to
41.5 T, show clear de Haas-van Alphen (dHvA) oscillations with the
major frequency near 20 T, along with a high frequency signal as
high as 10 kT.

To probe the Fermi surface properties, we performed both
angular and temperature-dependent torque measurements. To com-
plement the experimental results, we calculated the electronic band
structure and the Fermi surface of YVsSne using density functional
theory (DFT). The calculations reveal several Dirac points near the
Fermi level, along with notable features such as flatbands and Van
Hove singularities. Two electronic bands cross the Fermi level, con-
tributing to the Fermi surface. Unlike other kagome materials, the
Fermi surface consists of a deformed cylindrical pocket at the center
and chain-like features along the boundary of the Brillouin zone. By
analyzing the cross-sectional areas of these Fermi pockets, we com-
puted theoretical dHVA frequencies, which show good agreement
with the experimentally observed values.

We did not observe SdH oscillations in YV¢Sne even at a max-
imum applied magnetic field of 35 T [Fig. 1(c)]. This is likely due
to the sensitivity of resistivity-based SAH measurements to various
damping effects, including electron-phonon interactions and scat-
tering from defects and impurities within the crystal, which can
suppress quantum oscillations. In contrast, torque magnetometry,

pubs.aip.org/aip/apq

which detects changes in magnetization, offers a higher signal-to-
noise ratio and can amplify even subtle oscillations. Notably, torque
measurements can resolve tiny high-frequency signals embedded
within larger, low-frequency oscillations [Fig. 2(a)]. The proxim-
ity of multiple Dirac points near the Fermi level results in charge
carriers behaving like massless Dirac fermions, characterized by
exceptionally high mobility and unique quantum mechanical prop-
erties. As shown in Fig. 5, the flatband resides near the Fermi
level (~0.4 eV above) and can be tuned closer through doping or
application of external pressure. Furthermore, the presence of Van
Hove singularities, or saddle points in the band structure where the
density of states (DOS) diverges, significantly enhances electronic
interactions, increasing the likelihood of emergent phenomena,
such as magnetism, charge-density waves, and superconductivity.
These combined experimental and computational insights presented
here for YV¢Sne provide a valuable foundation for understanding
the electronic properties of other titanium- and vanadium-based
kagome systems.

SUPPLEMENTARY MATERIAL

The supplementary material provides details on the Berry phase
calculations (Fig. S1), orbital-resolved electronic band structures
(Fig. S2), and band-resolved Fermi surfaces (Fig. S3) of YV Sns.
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ABSTRACT

Here, we analyze the electron transport properties of a device formed of two crossed graphene nanoribbons with zigzag edges (ZGNRs) in
a spin state with total magnetization different from zero. While the ground state of ZGNRs has been shown to display antiferromagnetic
ordering between the electrons at the edges, for wide ZGNRs—where the localized spin states at the edges are decoupled and the exchange
interaction is close to zero—in the presence of relatively small magnetic fields, the ferromagnetic (FM) spin configuration can become the state
of lowest energy due to the Zeeman effect. In these terms, by comparing the total energy of a periodic ZGNR as a function of the magnetization
per unit cell, we obtain the FM-like solution of the lowest energy for the perfect ribbon, the corresponding FM-like configuration of the
lowest energy for the four-terminal device formed of crossed ZGNRs, and the critical magnetic field needed to excite the system to this
spin configuration. By performing transport calculations, we analyze the role of the distance between layers and the crossing angle of this
device in the electrical conductance, at small gate voltages. The problem is approached employing the mean-field Hubbard Hamiltonian in
combination with non-equilibrium Green’s functions. We find that ZGNR devices subject to transverse magnetic fields may acquire a high-
spin configuration that ensures a metallic response and tunable beam-splitting properties, making this setting promising for studying electron
quantum optics with single-electron excitations.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0233722

01:¥2:10 520T Ydie ¥

I. INTRODUCTION

The increasing interest in graphene nanoribbons (GNRs) for
molecular-scale electronic and spintronic devices has emerged
because it is well known that they inherit some of the exceptional
properties of graphene while having tunable electronic properties,
such as the dependence of the bandgap on their width and edge
topology,! and the appearance of 7-magnetism,” absent in pure
two-dimensional (2D) graphene. Moreover, these systems are a
remarkable platform for electron quantum optics, where the elec-
trons propagating coherently in these ballistic conductors resemble

photons propagating in optical waveguides.” On the one hand, it
has been shown that electrons can propagate without scattering over
large distances of the order of ~100 nm in GNRs.° On the other
hand, ballistic transport in ZGNRs can be fairly insusceptible to edge
defects as a consequence of the prevailing Dirac-like behavior, which
makes the electronic current flow maximally through the central
region of the ribbon.” Furthermore, with the advent of bottom-up
fabrication techniques, long samples of GNRs free of defects can now
be chemically realized via on-surface synthesis, as demonstrated in
the seminal works by Cai ef al. for armchair GNRs® and by Ruffieux
et al. for ZGNRs.’
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It is known that the ground state of ZGNRs corresponds to a
ferromagnetic (FM) ordering of spins along the edges and antiferro-
magnetic (AFM) ordering between the edges,'”"" i.e., with total spin
projection per unit cell equal to zero, S; = 0. In this configuration,
the magnetic instabilities of the states localized at the edges coming
from the flat bands of ZGNRs open a bandgap due to the Coulomb
repulsion in the otherwise metallic ribbons.'> The opening of the
bandgap and the edge states associated with the AFM coupling in
ZGNRs have been confirmed by experiments, where the magnetic
order has been shown to be stable up to room temperature.'”"* The
spin-polarized states localized at the edges are coupled such that
there is an energy penalty to excite the AFM ground state to the
FM state (exchange interaction). In the case of wider ZGNRs, the
AFM and FM solutions are close in energy (small exchange interac-
tion) due to the decoupling of the localized edge states, as they decay
exponentially toward the center of the ribbon.'”'”'® In this case, the
FM solution can be favored due to the Zeeman energy under a rela-
tively small magnetic field. The presence of a net spin-polarization,
in the absence of transition metals or heavy atoms, makes these
structures privileged for spintronics due to the weak spin scattering
in pure carbon-based systems.”'’ For instance, the intrinsically weak
spin-orbit and hyperfine couplings in graphene lead to long spin
coherence and relaxation times”’ and a large spin-diffusion length
that is expected to reach ~10 ym even at room temperature.’!

Recently, devices formed of crossed GNRs have been predicted
to behave as perfect beam splitters, where the injected electron beam
is divided into two of the four arms with near 50-50 probability and
zero backscattering.” ** Furthermore, the particular case of devices
formed of crossed ZGNRs is even more interesting, since they can
create a spin-polarizing scattering potential”> where the device can
work as a spin-polarizing beam splitter. Following these ideas for
electron quantum optics applications, a Mach-Zehnder-like inter-
ferometer in a GNRs network has recently been proposed.”® In terms
of their feasibility, manipulation of GNRs in STMs”"* has opened
the possibility of building 2D multi-terminal GNR-based electronic
circuits.”” The spin properties of such devices can be addressed
by measuring with spin-polarized STMs*”"" and probed by shot-
noise measurements.’> For instance, a device formed of two crossed
ZGNRs has been experimentally realized with the control over the
crossing angle reaching a precision of 5°.%

While, in previous studies, only the AFM regime has been
explored, other spin configurations can appear and show interest-
ing spin-polarized transport properties. For instance, in contrast to
the AFM case, the FM band structure of periodic ZGNRs does not
show a bandgap around the Fermi level, which makes this regime
interesting since there is conduction of electrons at the Fermi level.
Given the metallic character of the FM-like spin configuration, one
can envision to generate a minimal excitation in the device with only
one particle and no hole (a leviton)™* * by applying a Lorentzian-
like voltage pulse of specific amplitude and duration, enabling the
generation of a single-electron excitation.”

Here, we analyze the functioning of an electronic beam split-
ter built with two crossed ZGNRs (of width 30 carbon atoms across)
in an FM-like configuration, i.e., where the total magnetization of
the device is different from zero. To describe the spin physics of
the system, we employ the Hubbard Hamiltonian in the mean-field
approximation (MFH).”” The main complexity of the modeling lies
in the description of the coupling between ZGNRs at the crossing,
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for which we use a Slater-Koster parameterization®’ that has shown

to be in good agreement with other more accurate descriptions, such
as density functional theory.”* By employing this simple, yet power-
ful description based on single-electron physics, we can explore large
systems composed of ~8000 atoms.

The manuscript is structured as follows: In Sec. II, we explain
in detail the theoretical methods employed in this work (MFH
Hamiltonian and NEGF formalism). In Sec. III, we present the
obtained results for a device formed of two crossed-wide ZGNRs in
its FM-like configuration, and finally, the conclusions are provided
in Sec. I'V.

Il. METHODS

The system of study is composed of two infinite crossed ZGNRs
placed one on top of the other separated by an inter-ribbon dis-
tance d, with a relative crossing angle of around 0 = 60°, as shown in
Fig. 1. Here, the semi-infinite electrodes are indicated by red squares
numbered 1-4.

To describe the m-electrons, responsible for the spin polariza-
tion and the transport phenomena in the system in the presence
of Coulomb repulsion, we employ the MFH Hamiltonian® with a
single p, orbital per site,

Hyru = Z tijCjong + UZ nig(ni(7>. (1)

ij,0 i,o
Here, ciy (cfa) is the annihilation (creation) operator of an electron
at site i with spin o = {1,|} and nj, = c;racig is the corresponding

number operator. The tight-binding parameters ¢;; are described by
Slater-Koster two-center o- and 7-type integrals between two p,

di yé—vz

T

FIG. 1. Top and side views of the device geometry with spin density distribution.
The size of the blobs is proportional to the magnitude of the spin polarization,
(n+) — (ny), and the color depicts the sign of the spin polarization as indicated
by the color bar placed as an inset figure. The four numbered electrodes are indi-
cated in red squares. The crossing angle between the ribbons in this geometry is 6
= 60°. The layers are separated by a distance d. The width (W) of the ribbons is
30 atoms across.
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atomic orbitals*’ as used previously for twisted-bilayer graphene®*!
and crossed GNRs.”" ™ U accounts for the Coulomb interaction
between two electrons occupying the same p, orbital. The total
Hamiltonian Hy is the composition of the device Hamiltonian Hp,
the electrodes Hamiltonian for the periodic leads Hy, and the cou-
pling between these two Hqp, i.e., Hr = Hp + Y, (Ha + Hap). More
details for the implementation can be found in Refs. 25, 26, and 42.

As the junction between the ribbons breaks the translational
invariance of the perfect ZGNRs, we use Green’s function'”** for-
malism to solve the Schrédinger equation for the open quantum
system. Details of the implemented MFH model with open bound-
ary conditions* can be found in the supplementary material of
Ref. 25.

The transport properties are analyzed by computing the trans-
mission probabilities per spin index 0 = {1, | }, between the different
pairs of terminals as a function of the electron energy E from the
Landauer-Biittiker formula, "

Tos(E) = Tr [TaGT5G" ], @)

where G is the retarded Green’s function and T, is the broaden-
ing matrix of lead &, due to the coupling of the device to this lead.
See Ref. 26 for further details on the implementation. From the
transmission probability, one can obtain the zero-bias conductance,
calculated as

Gag = Go, Tap(Er), (3)

where Gy is the conductance quantum and Tgg(Er) is the trans-
mission of the nth available channel at the Fermi level Er, which
is related to Eq. (2) by Tus(E) = X, Tog (E). Note that, around Er,
there is only one single transverse mode (channel) available, and
therefore, Tg (E) = Tgs(E). To compute the transmission proba-
bilities, we use the open-source code TBTRANS' and the Python
package SISL for post-processing.*®

Ill. RESULTS

In this section, we analyze the transport properties for a
device formed of two crossed ZGNRs of W =30 carbon atoms
across (30-ZGNR) as a function of the inter-layer separation d
for values close to the typical distance between layers in graphite
(d =3.34 A), and the intersecting angle 0 for values close to the
commensurate case where 6 = 60°. To understand the spin states of
ZGNRs, we performed different spin-polarized calculations chang-
ing the total mean value of the spin operator S, per unit cell, ($,)
= 1% ({nit) = (ny)) = Sz, where the summation goes over the sites
i within the unit cell of the periodic ZGNR.

In Fig. 2(a), we show the total energy per unit cell as a func-
tion of S; relative to the case of S; = 0 (the AFM case) for a periodic
ZGNR of W = 30 carbons across. As can be seen here, there is a local
minimum at S; = 0.317, corresponding to the solution of the low-
est energy for S; # 0. The fact that the solution of minimum energy
appears at such total S; can be understood from the fact that, in the
AFM case, the local spin projection summed over the bottom (or
top) half of the unit cell of the ZGNR is |S}Z‘alf| =0.159. This means
that the total S, per unit cell in the FM case needs to reach twice
this value to flip the local magnetic moment at one edge. Note that

pubs.aip.org/aip/apq
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FIG. 2. (a) Energy differences between MFH solutions calculated with U = 2 eV
(blue line), U = 3 eV (green line), and U = 4 eV (red line), obtained by impos-
ing different spin projections S per unit cell. The dashed line separates the two
phases depending on S; (AFM and FM). The inset figures show examples of the
spin polarization for the AFM and FM configurations, calculated with S, = 0.08 and
S; = 0.21, respectively, where the red color indicates the up-spin majority, while
the blue color indicates the down-spin majority. (b) Band structure of the periodic
30-ZGNR calculated with U = 3.0 eV for S, = 0.317. Red and blue lines represent
the up- and down-spin components, respectively.

the magnetic moment associated with S; is 4 = goupS;, where g¢ ~ 2
is the electron spin g-factor and yj is the Bohr magneton. To see
to what extent the ribbon width affects these results, we compare
E(S;) for W = 10,20, 30,40-ZGNRs in Fig. S1 in the supplementary
material, where we observe two main features: While the qualitative
behavior is the same for all of them, the value of S; at which the min-
imum of energy appears is larger for wider ribbons, and, as expected,
the minimum value of E(S; > 0) diminishes with the width.

For each S;, we plot the energy corresponding to the spin con-
figuration of the lowest energy in Fig. 2(a). Here, we distinguish
between two phases depending on S;: AFM character (for S; < 0.15),
where the spin polarization shows opposite spin majorities at the
edges, and FM character (for S; > 0.15), where the spin polariza-
tion shows the spin majority of equal spin index. The two insets
to Fig. 2(a) show the spin polarization for a 30-ZGNR: one in the
AFM-like spin configuration (calculated with S, = 0.08), where it
can be seen that the colors at the edges are different (red and blue),
and another one in the FM-like spin configuration (calculated with
S; = 0.21), where it can be seen that the same color appears at both
edges (red). In the case of the AFM-like spin configuration for S, # 0,
not only the sign of the local magnetic moments at the bottom and
top edges of the unit cell is different but also the magnitude, as
a consequence of the existing spin imbalance. Whereas when the
FM character is achieved, both the magnitude and sign of the local
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magnetic moments at the bottom and top edges of the unit cell are
equal.

In Fig. 2(b), we plot the band structure for the FM solution of
the lowest energy for the 30-ZGNR, obtained with S; = 0.317, for
spin ¢ =1 (red lines) and o =| (blue lines). Here, we can observe the
metallic character of the FM configuration for the ZGNR, as there
are states available at the Fermi level, Er, for both up and down spins.

As mentioned above, although the ground state corresponds to
the configuration with S, = 0, the presence of a magnetic field B in
the z-direction (cf. Fig. 1) can stabilize a high-spin configuration due
to the Zeeman energy AE = uB = g.u,S.B. For instance, the corre-
sponding electronic energy E(S;) for the FM-like configuration of
the lowest energy is E(S; = 0.317) = 0.97 meV/cell above the ground
state, implying that a critical magnetic field of the order B, = 26.6 T
(parallel to the z-axis in this case) is needed to make the two spin
states degenerate. In Fig. 3(a), we study the zero-bias conductance
Gop(V) with (a, ) € {(1,2),(1,3)} (black and green lines, respec-
tively) for a device formed of two crossed 30-ZGNRs as a function
of the inter-layer separation d. Here, V represents a rigid shift of
the Fermi level Er. We consider inter-layer distances close to the
typical van der Waals distance between graphene layers in graphite
(d = 3.34 A).”"""" In the first place, we can infer that the total spin-
averaged conductance (sum of intra- and inter-layer conductances)
is 1 since the values for Gy, and Gy3 are symmetric with respect to
0.5Go, which means that there is no backscattering for an incoming
electron at the Fermi level in these devices at least for these ranges
of d and 6. In the second place, we observe an oscillating behavior of
Ggp with respect to this varying parameter. For instance, the inter-
/intra-layer conductance ratio reaches its maximum for d = 3.34 A.
While one would expect that for smaller inter-layer distances d the
interlayer (Gi3) conductance would increase, as the interlayer hop-
ping integral depends exponentially on the distance between the
ribbons, we observe a decrease (and increase in Gi,) for smaller d
in Fig. 3(a), as a consequence of an interference process due to the
scattering potential created by the crossing. We also observe that,
for d between 3.44 and 3.49 A, there is a crossing between Gz and
Gz, implying that, for that inter-layer separation, the device behaves
as a perfect 50:50 beam splitter where the incoming electron beam
is equally separated in the two possible outgoing directions with
Gap = 0.5Go for low gate voltages V.

Similarly, in Fig. 3(b), we study Gag(V') for different crossing
angles close to the commensurate configuration with 6 = 60°. We
apply the rotation around the center of the scattering region (cross-
ing) that is obtained for the case with 6 = 60° and accounts for the
effect of different possible stackings by averaging over the in-plane
translations of one ribbon with respect to the other. By doing so, we
aim to provide a comprehensive overview of the results, account-
ing for the variability in stacking configurations that might occur
in practical scenarios. The in-plane unit cell is determined by the
graphene lattice vectors. We obtain the conductance for a mesh of
four points along each lattice vector within the unit cell. The error
bars are calculated as the standard deviation of the spin-averaged
conductance G at each point, averaging over the in-plane transla-
tions. The observed variance of approximately ~10%-20% reflects
the variations across different translational configurations, show-
ing the inherent differences sampled by these translations. However,
not all the stackings are equivalent. For instance, the most ener-
getically favorable (and therefore most likely) configuration is the

ARTICLE pubs.aip.org/aip/apq
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FIG. 3. Spin-averaged conductance G,g(V) between incoming electrode o = 1
and outgoing electrodes 3 = 2 (black lines) and 3 = 3 (green lines) in units of the
conductance quantum Gy, as a function of (a) the inter-layer separation d, with
fixed crossing angle 6 = 60° and stacking as shown in Fig. 1, and (b) the crossing
angle 6 averaged over the in-plane translations of one ribbon with respect to the
other, with fixed d = 3.34 A, for a device formed of crossed 30-ZGNRs obtained
with U = 3.0 eV in the FM configuration. The error bars in (b) are calculated as

the standard deviation of G,3(0) at each 6 by averaging over the different dis-
placements. We obtain this conductance at different gate voltages V = —10 meV
(dashed lines with open squares), V = 0 (solid lines with filled circles), and V = 10
meV (dotted lines with open stars). The legend placed on top is common to both
panels (a) and (b).

AB-stacking (see the supplementary material of Ref. 25). By ana-
lyzing the transport properties relative to this varying parameter in
Fig. 3(b), we observe, on the one hand, that the inter-/intra-layer
conductance ratio reaches its maximum for 0 = 55°,65°. On the
other hand, the sum of the total spin-averaged conductance is 1 as in
panel (a), since the values for G2 and Gy are symmetric with respect
to 0.5Go as well, meaning that the variation of 8 does not introduce
backscattering. We can see that the oscillatory dependence of the
conductance on the crossing angle is less smooth than the one seen
in Fig. 3(a). This occurs due to a more complicated dependence of
the o- and 7-type hopping integrals on 6.

To see the effect of the width on the transport properties as a
function of these two varying parameters, we performed a similar
analysis for a 20-ZGNR device in the supplementary material (see
Fig. S2), where we observe that, qualitatively, the behavior is main-
tained. For further detail, we plot the energy-resolved transmission
probabilities for the 30-ZGNR device as a function of d and 6 in the
supplementary material (see Figs. S3 and S4).
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Finally, we note that it has been previously shown that the
symmetries associated with the spatial distribution of the spin den-
sities are crucial for the transport properties of the device.”**’ In
this case, since the FM character implies that (n;) # (n,), there
will not be a symmetric behavior for the existing spin channels.
However, the spin-density distribution possesses a symmetry axis
at y = sin (-60°)x that maps the device geometry to itself through
mirror operations, and applies to each spin component individu-
ally (conserves the spin index). As it has been shown in Refs. 24
and 25, certain symmetrical combinations of electrodes lead to equal
transmission probabilities Tqs = Tys. In this case, the symmetrical
electrode mapping corresponds to (1,2,3,4) < (4,3,2,1).

IV. CONCLUSIONS

We have analyzed the electron transport properties for a device
formed of two crossed infinite ZGNRs of W =30 carbon atoms
across (30-ZGNRs) as a function of the spin configuration by fix-
ing different values for the total spin per unit cell S;. In the first
place, by computing the total energy associated with these config-
urations E(S;), we have shown that there is a local minimum for
the solution with S; > 0, with E(S; > 0) close to 1 meV/cell above
the ground state [E(0)]. We have also seen that, depending on S,
there are two possible phases: AFM-character, where the edges of
the ZGNR unit cell are populated by opposite spin majorities, and
FM-character, where the two edges of the ribbon are populated by
the same spin majority. These two phases appear for S; < 0.15 and
Sz > 0.15, respectively. We also computed the band structure for the
FM-like configuration of the lowest energy, where we observe that
this system in such a spin state shows a metallic character. We esti-
mate that the critical magnetic field needed to make this FM-like
solution degenerate with the AFM ground state is B, = 26.6 T for this
particular case, although this value will further decrease for wider
ribbons.

We have also calculated the inter- and intra-layer electrical con-
ductances for different gatings varying the inter-layer distances, for
distances close to the van der Waals distance between graphene
layers in graphite (d = 3.34 A), and crossing angles close to the com-
mensurate stacking where 6 = 60° for this four-terminal device. We
have shown that the (spin- and displacement-averaged) electrical
conductance displays an oscillatory behavior with respect to these
varying parameters at low gate voltages (—10 meV < V < 10 meV)
while maintaining the sum Gi2 + Gi3 = 1, which means that there
is no backscattering for the devices for different values of d and
0 within the shown ranges nor conductance into terminal 4. The
maximum value for the inter-/intra-layer spin-averaged conduc-
tance ratio (Gi3/Gi,) for this device is found for d = 3.34 A and
6 = 55°,65°. In addition, to show that these results are not exclusive
to the chosen ZGNR width, we performed a similar analysis for a
20-ZGNR device (see supplementary material), where we show that
it possesses similar qualitative behavior.

The results presented here add to the vision of using GNR-
based devices for spintronics and quantum technologies. On top of
the already discussed properties and applications of spin-polarized
GNR-based beam splitters for electron quantum optics,” > this
device in its FM-like spin configuration can be a promising candi-
date due to its metallic nature, which facilitates electron injection
through the generation of a minimal excitation. This can be achieved

pubs.aip.org/aip/apq

by applying a Lorentzian-like voltage pulse with a specific ampli-
tude and duration to produce a single-electron excitation within the
device.”” In fact, performing time-dependent quantum transport
calculations for levitonic excitations™ *’ could offer critical insights
into the nonequilibrium dynamics of the proposed devices, and
further elucidate the role of minimal excitation states in transport
phenomena of the charges injected by the pulse.”’ ™

SUPPLEMENTARY MATERIAL

See the supplementary material for additional calculations,
including transport calculations for devices with other ribbon widths
and transmission curves as a function of electronic energy for the
device discussed in the main text.
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