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Abstract Numerous nanophotonics applications involve
the spatial confinement of the electromagnetic field to a
length scale comparable to the optical wavelength, such as in
photonic crystal (PhC) cavities or defects or in microlasers.
First, we review a recently proposed, novel optimization
scheme for the efficient construction of maximally local-
ized photonic Wannier functions to be used as a set of basis
functions for the description of localized modes in PhCs. We
then analyze bistable lasing and the mode switching dynam-
ics in multimode PhC microlasers and describe a recently
developed theory for the confined, spatial intensity corre-
lations (second-order coherence) in homogeneously disor-
dered random lasers. Finally, a systematic diagrammatic ex-
pansion for the eigenmode renormalization of microlaser
cavities due to the laser nonlinearity is described.
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1 Introduction and overview

Spatially confined optical modes play a central role in nu-
merous problems of photonics. Photonic crystal (PhC) ap-
plications [1] frequently utilize the photonic bandgap effect
together with defect, cavity, or waveguide structures to pro-
duce localized defect or cavity modes whose frequency lies
in the gap of a PhC. Furthermore, in microlasers the local-
ity of lasing modes is instrumental for overcoming the laser
threshold and for providing coherent feedback [2, 3]. These
applications call for efficient methods to calculate defect or
cavity modes in PhCs and for a detailed understanding of
the mode structure and dynamics in complex, microscopic
lasing systems. In this article, we review our work regarding
these problems.

In Sect. 2, we analyze the optimization process to con-
struct maximally localized Wannier functions (MLWF) as
a basis set for the expansion of defect and cavity modes
in PhCs. The optimized locality of the Wannier basis func-
tions [4–6] is crucial for keeping the dimension of the func-
tion space to be used for the expansion of local eigenmodes
minimal, and hence for reducing the numerical effort. The
commonly used optimization criterion, minimization of the
second moment of the Wannier function modulus squared,
turns out to have multiple local extrema as a functional of
the Wannier function, which hampers finding the optimal
one. Our analysis suggests the origin of this unwanted mul-
tiplicity and leads us to put forward a new optimization crite-
rion, maximization of the modulus squared integrated over a
Wigner–Seitz cell around a given Wannier center [7]. It ex-
hibits a unique, global optimum. We also propose a novel,
analytical ansatz for the Wannier function as an initial form
that speeds up local optimization procedures, like the com-
monly used conjugate gradient methods.

Sections 3 to 5 are devoted to lasing systems, where
Sect. 3 deals with the dynamics in PhC microresonators with
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predefined mode structure, while in Sects. 4 and 5 more gen-
eral, disordered or chaotic laser systems are treated, respec-
tively. In Sect. 3, the mode competition and the possibility
of bistable lasing in multimode microlaser cavities is inves-
tigated. We map out the stability diagram of a two-mode
microlaser [8, 9] by solving a multimode representation of
the semiclassical Maxwell–Bloch equations and show by di-
rect, numerical finite difference time domain (FDTD) cal-
culations [10] that the different lasing modes may be ad-
dressed by appropriate seeding pulses [11, 12] and ultrafast
switching between the modes is possible [8, 13]. The lat-
ter suggests a possible use of such multimode microlasers
as microscopic, switchable, multifrequency light sources, as
optical storage devices, or for optical pattern recognition.

In Sect. 4, we develop an analytic theory for 3-dimensio-
nal, homogeneous random lasers [14], i.e., strongly disor-
dered, laser-active media where the light propagation is dif-
fusive and the lasing modes are not predefined because of
the absence of a resonator. In particular, we explain the ex-
perimentally observed fact that coherent feedback is possi-
ble in homogeneous random lasers although localized eigen-
modes due to Anderson localization [15] do not exist. To
that end, we show that in the presence of stimulated emis-
sion causality [16] implies that the intensity-intensity cor-
relations (second-order coherence) have a finite correlation
length ξ , even though the electromagnetic field distribution
is extended [17]. We calculate ξ in dependence of the pump
rate by solving the diffusive intensity transport theory (in-
cluding wave interference effects), coupled to the semiclas-
sical laser rate equations [17–19].

Section 5 addresses systems where the resonance fre-
quencies of the lasing modes in the lasing state are strongly
renormalized with respect to the passive eigenmodes. These
renormalizations have been recognized to be induced by a
spatially nonuniform dielectric constant or population in-
version [20, 21], typically caused by a nonuniform inten-
sity profile of the lasing mode, or by the nonlinearity of the
lasing medium [22, 23]. A systematic, diagrammatic pertur-
bation theory, which allows to calculate corrections to phys-
ical quantities to arbitrary order in the laser nonlinearity, has
been developed in [24] and applied to gas lasers with chaotic
cavities in [25].

2 Efficient construction of Wannier functions

2.1 Formulation of the problem

An efficient way of computing the electromagnetic field
distribution of light in a photonic system is to expand the
field in terms of an appropriate orthonormal set of basis
functions which renders the stationary electromagnetic wave
equation as a discrete matrix eigenvalue problem [26]. The

proper choice of the set of basis functions is crucial in or-
der to obtain an accurate description while keeping the di-
mension of the eigenvalue problem minimal. We consider
two-dimensional (2D) PhCs, characterized by a periodic di-
electric function ε(r) = ε(r + R), ∀R ∈ L, with r = (x, y)

denoting a 2D vector in the x–y-plane and R being a lattice
vector of some 2D lattice L. The wave equation for time har-
monic TM (transverse magnetic), E(r, t) = e−iωtE(r), and
TE (transverse electric), H(r, t) = e−iωtH(r), polarization
reads, respectively,

LEE(r) = − 1

ε(r)
∇2E(r) = ω2

c2
E(r), (1)

LH H(r) = −∇ 1

ε(r)
∇H(r) = ω2

c2
H(r). (2)

The wave operators LE and LH are hermitian with respect
to the corresponding inner products:

〈f |g〉E =
∫

V

d2rf ∗(r)ε(r)g(r), (3)

〈f |g〉H =
∫

V

d2rf ∗(r)g(r). (4)

V is the 2D volume of the crystal.
While for propagating wave problems an expansion in

terms of Bloch functions, the eigenmodes of the unperturbed
PhC, is appropriate [27, 28], for the description of defect,
cavity, and also of waveguide structures the use of Wannier
functions as a basis set [29–32] is in principle superior, be-
cause Wannier functions may be constructed as being local-
ized in space and are still an exact representation of the point
symmetry group of the host PhC. Wannier function expan-
sions developed for electronic systems [33, 34] have only
recently been applied to the electromagnetic case [4, 35].
Since then, the theory of photonic Wannier functions has
been applied to the analysis of 2D PhC cavities, waveguides
[35, 36], waveguide crossings [5], and PhC heterostructures
[37]. The generalization of the approach to the case of 2D
slab PhCs and 3D PhCs has been also reported in [6, 38].

The Bloch functions are the solutions of the wave equa-
tions (1) or (2), respectively, in a periodic medium,

Bnk(r) = eiφnkeikrunk(r) =: ei�nkB̃nk(r), (5)

where unk(r) is a lattice-periodic envelope function and n

is the band index. We have explicitly denoted the arbitrary
phase φnk of the Bloch function, the so-called Bloch phase.
The Wannier functions are defined as the Fourier transform
of the Bloch modes with respect to the wave vector k,

WnR(r) =
∑
m

Unm

1√
N

∑
k∈BZ

e−ikRBmk(r), (6)
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where, in addition, mixing of different bands may be ef-
fected by the unitary matrix Unm [5, 6].

As seen from (5), (6), the Wannier functions involve the
undetermined parameters φnk and Unm. For simplicity, band
mixing will not be considered further in the present work,
i.e., Unm = δnm. While for arbitrary φnk (and in the more
general case also Unm) the Wannier functions are generi-
cally not localized in space, these parameters may be ad-
justed to optimize the locality. This constitutes a complex,
high-dimensional optimization problem [39]; the dimension
given by the number of Bloch functions used. It is, therefore,
crucial to have an optimization procedure which efficiently
and at the same time reliably converges to the optimally lo-
calized Wannier function.

In the following, we analyze the optimization process
with respect to two different locality criteria, (i) the com-
monly used second moment (SM) criterion [4, 6, 40], and
(ii) the new integrated moment (IM) criterion, which maxi-
mizes the modulus squared of the Wannier function within a
Wigner–Seitz cell around the Wannier function center [7].
For each criterion, we compare the results of the conju-
gate gradient (CG) algorithm (which is fast in finding an
extremum, but only local) with the results of a numerically
more costly but global genetic optimization algorithm (GA)
[41] as a benchmark. Taking the biologic evolution in nature
as a model, the GA method works with a population of in-
dividuals which pass through a selection procedure and can
reproduce themselves. Each Wannier function represents an
individual. The set of Bloch phases, which determines the
Wannier function, is represented as a large, binary string.
The GA method starts with a population of random Wan-
nier functions and passes them through a selection proce-
dure where only that one half of the Wannier functions are
retained which are most strongly localized with respect to
the given locality criterion (“most fit individuals”). In a sec-
ond step, these survived individuals are allowed to reproduce
themselves by randomly mixing their strings of phases, thus
passing their attributes to the offsprings. Together with their
off-springs, the survived individuals, which correspond to
better localized Wannier functions, comprise the new gen-
eration. By iterating this procedure over several thousands
of generations the algorithm will converge slowly but def-
initely towards the global extremum. Once the GA proce-
dure has reached the valley of the global extremum, the CG
method is applied subsequently to the GA algorithm in or-
der to accelerate the convergence and improve the accuracy
of the solution [41].

Four different two-dimensional photonic crystals have
been considered for both fundamental polarizations. Square
(Sq) and triangular (Tr) lattices of dielectric rods in air (D)
and air rods in dielectric (A) are considered. In what fol-
lows, we will refer to these systems as Sq–D, Tr–D, Sq–A,

Fig. 1 Second moments Sn (inverse locality) of the Wannier functions
in the nth band, minimized by using the conjugate gradient method
[7]. Four different, randomly chosen initial sets of Bloch phases, A,
B, C, D, were used for the CG optimization. Top: Sq–D crystal, TM
polarization. Bottom: Tr–D crystal, TE polarization

and Tr–A, respectively. The radius of rods and the dielec-
tric constant of dielectric material and air are chosen to be
r0/a = 0.2, ε = 12, and ε = 1, respectively.

2.2 Second moment optimization

The second moment of the Wannier function WnR(r) is de-
fined as

Sn

({φnk}) = 〈
WnR|(r − r0)

2|WnR
〉
E/H

, (7)

with r0 being the Wannier center. Two positions of the Wan-
nier center have been considered, (i) in the center of the scat-
terer (“on-site”) and (ii) in the geometrical center between
four (three) scatterers in the case of square (triangular) lat-
tices (“between”).

The SM, (7), exhibits multiple extrema as a functional of
the Wannier function, i.e., depending on the Bloch phases.
This follows from the fact that the extremum found by the
local GC method depends sensitively on the initial set of
Bloch phases used as a starting point of the optimization.
As a representative example, the SM (i.e., inverse locality)
of the SM-optimized Wannier functions, minimized by the
GC method, is shown in Fig. 1 for four different, random
sets of the initial Bloch phases for Sq–D (TM polarization,
upper panel) and for Tr–D (TE polarization, lower panel)
structures, respectively. The sensitivity to the initial set of
Bloch phases is clearly seen.

In Fig. 2, the evolution of the GA results is depicted
for two representative systems and polarizations. Every 100
generations, a Wannier function with highest locality in the
current population was taken as a starting point for the
subsequent CG optimization. Over the first several thou-
sand generations, the locality of the resulting Wannier func-
tions is varying strongly, indicating hopping of the solution
among different local minima due to the stochastic nature of
the algorithm. At the top panel of Fig. 2, one can observe
how the algorithm is stuck in a local minimum over sev-
eral thousands of generations, before it escapes and reaches
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Fig. 2 Locality (1/Sn) of the
SM-optimized Wannier
functions as a function of GA
generation for the Sq–D
structure, TM polarization, 3rd
band (top) and for the Sq–A
structure, TE polarization, 5th
band (bottom) [7]. The dashed,
green line shows the locality of
the best-localized Wannier
function in each generation.
Every 100 generations, these
Wannier functions served as a
starting point for the subsequent
CG optimization step (red
crosses). On the right-hand side,
the modulus square of the
SM-optimized Wannier function
is shown for an early (top:
40,000th, bottom: 38,300th) and
a later (top: 60,000th, bottom:
100,000th) generation,
respectively

the global minimum valley at around the 50,000th genera-
tion. An improvement of the locality for later generations is
clearly seen from the modulus square of the optimized Wan-
nier functions (Fig. 2, right panels). Despite the multiple
local minima, the discontinuous nature of the GA method
ensures with stochastic certainty that the global minimum
of the SM is found, providing the best localization of the
Wannier functions with respect to a given locality measure.
At the same time, however, the numerical load of the GA
method exceeds the one of the CG method by far, making
it inappropriate for routine application for an efficient con-
struction of maximally localized Wannier functions.

2.3 Integrated modulus optimization

The complicated structure of the Wannier functions at large
distances, which is expressed by several local minima of
their SMs and the associated difficulties in the construc-
tion of maximally localized Wannier functions, motivates
the search for a simpler criterion for the locality of Wannier
functions. Therefore, the integrated modulus square (IM)

Fig. 3 Locality (In) of the Wannier functions optimized with respect
to the IM locality measure using the CG method. Four different ran-
domly chosen initial sets of Bloch phases were used for the CG opti-
mization. Top: Sq–D crystal, TM polarization. Bottom: Tr–D crystal,
TE polarization

criterion has been introduced [7]. It is defined as

In

({φnk}) =
∫

UC

d2rW∗
nR(r)X(r)WnR(r), (8)

where the integration region is the first Wigner–Seitz unit
cell around the Wannier center. We choose the function X(r)
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Fig. 4 Locality (In) of the
IM-optimized Wannier
functions as a function of GA
generation for the Sq–D
structure, TM polarization, 3rd
band (top) and for the Sq–A
structure, TE polarization, 5th
band (bottom). The dashed
green line shows the locality of
the best-localized Wannier
function in each generation.
Every 100 generations, these
Wannier functions served as a
starting point for the subsequent
CG optimization step (red
crosses). On the right-hand side,
the modulus square of the
IM-optimized Wannier
functions is shown for an early
(20,000th) and a later (60,000)
generation, respectively

in such a way, that the IM is equal to unity for a Wannier
function which is completely confined within such a unit
cell. i.e.,

X(r) =
{

ε(r) for TM,

1 for TE.
(9)

A well localized Wannier function corresponds to a large
IM, and one needs to maximize the IM in order to obtain the
maximally localized Wannier functions. The IM is a rather
strict criterion, since it does not depend on the structure of
the Wannier functions outside of the integration region. Note
that it may be generalized straightforwardly to integrations
over a larger volume around the Wannier center, in case sat-
isfactory localization within the first Wigner–Seitz cell is not
possible.

We examined the IM locality measure as a localization
criterion for the same four different physical systems and
both polarizations as it was done in the SM case. First, we
show in Fig. 3 the maximized IM for Wannier functions with
different band indices n, using the same four different, ran-

domly chosen initial sets of Bloch phases as in Sect. 2.2.
In contrast to the SM case, the localities of the resulting
Wannier functions coincide for all four sets of phases. This
is the case for all considered systems and polarizations. It
indicates strongly that the IM locality measure possesses a
unique, global maximum only.

To support this hypothesis, we applied the GA method
to solve the optimization problem. For all considered struc-
tures, no significant variation of the locality has been ob-
served for different GA generations. Representative exam-
ples are shown in Fig. 4. One can clearly see, that over many
thousands of generations the locality of the Wannier func-
tions optimized with respect to the IM criterion stays con-
stant. This provides strong numerical support that the con-
sidered optimization problem possesses a single extremum,
making the procedure independent of the choice of the ini-
tial set of Bloch phases. As a consequence, the use of the
IM as a locality criterion together with the CG as an opti-
mization method represents a fast as well as reliable method
for the construction of maximally localized Wannier func-
tions. Figures 5 and 6 show the maximally localized Wan-



168 T. Stollenwerk et al.

Fig. 5 Modulus square of the maximally localized Wannier functions
(with respect to the IM) for the Sq–D structure (TM polarization). The
Wannier center was chosen as “on-site” for the 1st and 5th band and as
“between” for the 2nd and 4th band

nier functions for the first several bands of the Sq–D (TM
polarization) and Sq–A (TE polarization) structures, respec-
tively. In both cases, the IM criterion was used along with
the CG method. The optimized Wannier functions demon-
strate good locality which degrades slowly with increasing
band indices, since the envelope functions become more and
more oscillatory, reflecting the not-plane-wave like nature of
Bloch modes.

The IM optimization criterion is free of local maxima,
simple to evaluate numerically and can be generalized in
a straight-forward way to confinement in a volume larger
then the first Wigner–Seitz cell, if necessary, e.g., in higher
bands. These features have led us to put forward the IM cri-
terion as being superior to the commonly used SM criterion.
It is worth noting, that the Wannier functions optimized with
respect to the IM and SM criteria are in general not equal,
even if the global minimum of the SM or the global maxi-
mum of the IM has been reached. For example, for the sys-
tem of dielectric rods in air (TM polarization), the SM- and
IM-optimized Wannier functions coincide for the 1st and the
2nd band (not shown), but not for the third band (top right
Wannier function in Figs. 2 and 4). The suitability of the
Wannier functions optimized in this way for the calculation
of field distributions in PhC cavities has been demonstrated
for selected examples in [7].

2.4 Choice of initial conditions

Even though the IM optimization criterion does not show
multiple local maxima, as our analysis indicated, a proper
choice of the starting set of Bloch phases may greatly facil-
itate and accelerate the convergence of the optimization. In

Fig. 6 Modulus square of the maximally localized Wannier functions
(with respect to the IM) for Sq–A structure (TE polarization). The
Wannier center was chosen as “on-site” for the 1st band and as “be-
tween” for the 2nd, 4th, and 5th band

[7], we have proposed an analytical expression for a generic
set of Bloch phases to be used as a starting point for the
optimization procedure. It reads

tan(2φk) = − ∫
UC

d2r2Re(B̃nk)Im(B̃nk)∫
UC

d2r{Re(B̃nk)2 − Im(B̃nk)2} , (10)

where B̃nk = [B̃nk(r) · B̃nk(r)]1/2 is the (complex) ampli-
tude of the vector Bloch function. This choice is based on
the fact, proven in [7], that the Bloch phases φk, (10), solve
the Wannier IM optimization problem exactly, if the Wan-
nier functions are real-valued (which can always be achieved
by proper choice of the φk) and if the real part of all com-
ponents of the vector Bloch functions have the same sign
B̃nk(r) for all space points r in the unit cell and for all wave
vectors k in the first Brillouin zone.

3 Bistability and ultrafast switching in multimode
microlasers

Microlasers with cavity sizes comparable to the light wave-
length λ are promising from both fundamental and ap-
plication points of view [42] for use as integrated coher-
ent light sources. Making microlasers capable of multiple-
wavelength emission contributes even more toward minia-
turization of optical components, and also provides an ad-
ditional degree of freedom in light control. The common
approach toward microlaser tunability is in essence modi-
fication of the optical properties of a single-mode cavity by
thermal [43, 44], micromechanical [45, 46], or electroopti-
cal means [47–49].
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In contrast, we have proposed the concept of a switchable
microlaser, comprised of a multimode laser microresonator,
where lasing can be switched on demand to any of its eigen-
modes [8]. We have shown that a definite resonator mode
can be selected for lasing by injection seeding [11, 12, 50,
51], i.e., by injecting an appropriate pulse before and during
the onset of lasing, such that the stimulated emission builds
up in a chosen mode from this seeding field rather than from
the random noise present in the system due to quantum fluc-
tuations and spontaneous emission. We investigate the time
needed for switching between different lasing modes and
analyze how this process is influenced by noise in compe-
tition with the seeding signal [8]. Multistable microlasers
with more than two different, stationary lasing states have
been investigated in [12].

The semiclassical multimode laser model of [52] has
been generalized to study the dynamics of individual modes
in a two-mode laser, where an external field is present in the
cavity due to the injection seeding. An example of a two-
mode microcavity, which we have chosen to study numeri-
cally, is depicted in Fig. 7a. The microcavity is based on two
coupled defects in a two-dimensional (2D) photonic crystal
(PhC) made of dielectric nanopillars [54, 55]. Pillar PhCs
are practically feasible by state-of-the-art fabrication tech-
nology [56, 57].

The system of two identical coupled single-mode cav-
ities supports two modes, namely the bonding (symmet-
ric) and the antibonding (antisymmetric) mode, character-
ized by spatial field distributions u1,2(r) and frequencies
ω1,2 = ω0 ∓ 	ω, respectively. Here, 	ω is the mode detun-
ing from the frequency of the single-cavity resonance, ω0.
For weak mode overlap, the spatial intensity profiles of two
modes nearly coincide, |u1(r)|2 ≈ |u2(r)|2. We assume that
the cavities contain a laser medium with the gain centered at
frequency ωa = ω0 + δ, homogeneously broadened to have
a line width of 	ωa > 	ω, where δ is the detuning of the
gain profile from the cavity frequency ω0. See Fig. 7b for
the definition of the frequency parameters. For the numeri-
cal calculations below, we take a quadratic array of 12 × 12
nanopillars with dielectric constant ε = 9 in air (ε = 1). The
lattice period is a = 500 nm and the pillar radius r = 0.2a.
Then both defect modes have frequencies near a/λ � 0.395
(Fig. 7b).

To obtain an understanding of the seeding-induced mode
switching, the semiclassical Maxwell–Bloch equations [50],
may be simplified using the rotating-wave and the slowly
varying envelope approximations. All the spatial dependen-
cies of the electric field and atomic polarization can then be
represented in the basis of the two cavity modes, such that
E(r, t) = E1(t)u1(r)e−iω1t + E2(t)u2(r)e−iω2t , etc., and
the atomic polarization can be eliminated adiabatically [52,
53]. For class-A lasers, where the radiative decay rate γ⊥ =
	ωa/2, the nonradiative decay rate γ‖, and the cavity mode

Fig. 7 (a) Schematic illustration of the resonant system under study.
The two coupled defects in a periodic 2D PhC lattice contain a gain
medium, shown in green. Two emitters shown are used to produce the
seeding signal delivered to the defect sites by two waveguides. The
spatial field distribution of the seeding signal is schematically depicted
as a gray scale on the left, where white (black) refers to positive (neg-
ative) field strength. (b) Frequency parameters of the two-mode laser,
see text

decay rates κj are related as γ⊥ � γ‖ � κj , the following
system of equations for the slowly varying envelopes Ej(t)

in the two modes is obtained [52] (i, j = 1,2, i �= j ),

dEj (t)

dt
= gRj

[(
Lj − κj

gRj

)
− ηLj

(
α

jj
jj Lj |Ej |2

+ [
α

jj
ii Li − α

ji
ij Re(χj Mji)

]|Ei |2
)]

Ej(t)

+ Fj (t). (11)

In (11), the terms linear in Ej(t) describe stimulated emis-
sion driving and are controlled by the light-matter coupling
g � √

2πω0d2/�, with d the dipole moment of the atomic
transition, by the pumping rates projected onto the modes
j = 1,2, Rj = ∫

G
u∗

j (r)uj (r)R(r) dr, and by the cavity

mode decay rates κj . The coefficients Lj = Imβ−1
j , with

β1,2 = δ±	ω− i	ωa/2, account for the different mode-to-
gain couplings due to asymmetrical detuning of the atomic
transition with respect to the resonator lines. The terms cu-
bic in Ej(t) describe field saturation above the lasing thresh-

old, where η = d2/2γ‖�2 and the overlap integrals α
ij
kl =∫

G
u∗

i (r)uj (r)u∗
k(r)ul(r) dr are taken over the regions G

containing the gain medium. Since |u1(r)|2 ≈ |u2(r)|2 we
can assume αii

jj = α
ij
ji ≡ α, R1 = R2 = R and κ1 = κ2 = κ .
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Fig. 8 Cavity phase diagrams for a lasing system governed by (11)
for F s

j F (t) � Fn
j (t) for (a) symmetric (δ = 0) and (b) nonsymmet-

ric (δ = −0.25	ω) values of the mode frequencies with respect to the
central gain frequency ωa (ωa < ω0, as shown in Fig. 7b). The dots
denote the stable cavity states, and the curves represent the phase tra-
jectories for their temporal evolution for different ratios F s

1 : F s
2 in the

direction of the arrows

The cross-saturation terms, with Mij = β−1
i + (β∗

j )−1 and
χ1,2 = −iγ‖/(±	ω − iγ‖), depend in an asymmetrical way
on the mode indices i, j . However, this asymmetry remains
small unless 	ω � 	ωa .

The inhomogeneous terms Fj (t) originate from the exter-
nal injection seeding field and from a noise field accounting
for spontaneous emission [52]. For vanishing functions Fj ,
(11) would take the form of the standard two-mode compe-
tition equations [50] with mode coupling constant C slightly
exceeding unity. This corresponds to bistable lasing [58, 59]
and to mode hopping in the presence of stochastic noise in
the system [60]. If both an external seeding field E s(r, t)
and a stochastic noise field E n(r, t) are present in the cavity,
E (r, t) = E s(r, t) + E n(r, t), one obtains

Fj (t) ≈ ωj Lj

τ

∫ t

t−τ

dt ′ eiωj t ′
∫

G

uj (r)E (r, t ′) dr (12)

= F s
j F (t) + Fn

j (t). (13)

The time integration in (13) is the averaging over a time in-
terval larger than 1/	ω. The function F(t) is determined
by the temporal dependence of E s(r, t). The coefficients F s

j

and Fn
j (t) are determined by the spatial overlap of each

mode with the seeding and noise fields, respectively. We
consider the situation when the seeding prevails over the
noise, i.e., F s

j F (t) � Fn
j (t), before and during the onset

of lasing. After the onset the Ej become so large that the
terms Fj have no effect anymore. In this situation, the evo-
lution of the resonator will be determined by the ratio of
F s

1 and F s
2 .

We analyze the influence of the balance between F s
1

and F s
2 on the final lasing state by numerical solution of

(11) and plotting the phase trajectories of the temporal res-
onator state evolution in the (|E1|2, |E2|2) plane (Fig. 8).
The numerical values of the coefficients in (11) are calcu-
lated for the model PhC structure of Fig. 7a. As seen in

Fig. 8, the lasing state first reaches overall intensity satu-
ration (|E1|2 + |E2|2 = E2

s ) and then drifts towards one of
the stable fixed points corresponding to single-mode lasing
(either |E1|2 = E2

s or |E2|2 = E2
s ). The drift occurs after the

sharp bend seen in each of the phase trajectories. If the mode
coupling constant is C = 1, the drift becomes infinitely slow,
and the (1,0)–(0,1) line in Fig. 8 turns into a line of fixed
points. For our case, where C only slightly exceeds unity,
the drift happens on a longer time scale than the initial over-
all intensity growth, and the intermode beats decay fast af-
ter the lasing onset. In the case of symmetric detuning of
the cavity modes with respect to the gain frequency (δ = 0),
single-mode lasing is achieved into that mode whose spatial
overlap with the seeding field, Fs

j , is largest Fig. 8a. The
asymmetry of the modes with respect to gain (δ �= 0) shifts
the turning point toward one of the modes, but if the seeding
is chosen in a way that the spatial overlaps in (13) result in
F s

1 � F s
2 or F s

1 � F s
2 , each of the modes can nonetheless

be selected for lasing Fig. 8b.
To refine the predictions of this simple theory of bistable

lasing, we have modeled the lasing action in coupled PhC
defects with a realistic injection mechanism (Fig. 7) us-
ing the finite-difference time-domain (FDTD) method [61,
62]. The defect modes are located inside the PhC band gap.
Both defects are filled with an active medium whose pop-
ulation dynamics are described at each space point by the
rate equations of a four-level laser with an external pump-
ing rate Wp . In defining the model and its parameter val-
ues we follow in detail [62, 63]. In particular, the nonradia-
tive transition times of this model are taken so as to achieve
population inversion, i.e., τ32 � τ10 � τ21, with τ31 = τ10 =
1 × 10−13 s, τ21 = 3 × 10−10 s, and the density of laser-
active atoms (i.e., electrons participating in the lasing pro-
cess) is Ntot = 106/µm3 [63]. The Maxwell equations, sup-
plemented by the usual equation of motion for the polariza-
tion density in the medium and by the laser rate equations
[61–64], are solved for the geometry of Fig. 7a in TM polar-
ization, where E(r, t) = Ey(x, z, t) ŷ. The seeding signal is
excited by two emitters (linear groups of dipoles) engineered
on the same chip as the PhC and is transmitted to the de-
fects through waveguides in the PhC (see Fig. 7). Each of the
emitters generates a single short Gaussian pulse with carrier
frequency ω at or near ωa . The calculations have been per-
formed using different, fixed values of the half-width dura-
tion σt in the range between σt = 5×10−14 and 10−13 s. The
relative phase of the fields in these pulses is chosen 0 or π .
As expected, such seeding patterns almost exclusively excite
the bonding and antibonding mode, respectively. Techni-
cally, the seeding dipoles are realized as point-like oscillat-
ing current sources in the Maxwell equations [65]. Similarly,
the spontaneous emission [62, 66, 67] is modeled as an en-
semble of point current sources, randomly placed in space,
with temporally δ-correlated Langevin noise [66]. For the
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Fig. 9 Illustration of mode-to-mode switching. Top: time dependence
of the normalized pumping power Wp , seeding signal jy , and cavity
field Ey . Bottom: spatial distribution of the electric field amplitude
Ey(x, z) (gray scale; white: positive; black: negative field strength)
in the steady-state lasing regime after initial seeding (1) and each re-
seeding (2, 3). The time instants (1–3) are marked in the top panel
by dashed lines. This calculation was done for a typical pumping rate
Wp = 1 × 1013 s−1 and a seeding pulse duration σt = 1.2 × 10−13 s

FDTD computations, the computational domain 13a × 13a

with perfectly matched layer (PML) boundary conditions
was discretized with an a/16 mesh and a time step of
dt = 6 × 10−17 s required by numerical stability; see [68]
for details.

Neglecting noise at first, we find that, if the laser am-
plification line spectrally covers both resonant modes and
provides a comparable effective gain for each of them (i.e.,
|δ| < 	ω), a seeding signal of the type described above can
individually select any of the two modes when applied (with
arbitrary strength) during the onset of lasing, i.e., during
the exponential growth after switching on the pumping. The
steady-state lasing is then nearly single-mode, and the dom-
inant mode is the one whose symmetry matches that of the
seeding signal (Fig. 9). This is in agreement with the semi-
analytical theory described above. The electric field maps in
Fig. 9 (bottom) show that the spatial field distributions of
the two lasing modes remain nearly unaffected by the side-
coupled seeding waveguides. In the present setup, the laser
output is primarily delivered through the seeding waveg-
uides. A detailed study of the microlaser radiation character-
istics will be given elsewhere. Moreover, we have shown that
successive switchings from one mode to another are possi-
ble. To achieve this, the pump is first turned off to allow the
currently lasing mode to decay. After a certain cool-down
time τc, the pumping is turned back on, and the cavity is
re-seeded for the other mode in the same way as the ini-
tial seeding occurred. Figure 9 demonstrates such a switch-
ing sequence from the bonding to the antibonding mode and

back. The pump was kept on for a time needed to achieve
quasicontinuous lasing, as confirmed by the temporal depen-
dence of the cavity field. Looking at the spatial field distri-
bution in this regime (panels (1–3) in Fig. 9), we make sure
that the mode switching occurs in the desired order.

The switching time τs between two lasing modes is pri-
marily controlled by the minimum cool-down time τc,min,
i.e., by the relatively slow mode decay time, τ = 1/κ , and
hence by the cavity Q-factor Q = ωj/κ , not by the fast
lasing onset after reseeding, τs ≈ τc,min. Since the mode
decays exponentially with time from its steady-state las-
ing amplitude A0 and the reseeding signal must be strong
enough to override the residue of the decaying initial mode,
τc,min decreases logarithmically with increasing reseeding
pulse power (i.e., with its time-integrated intensity) or, for
a Gaussian pulse, with the seeding amplitude S, τc,min =
−(cj /κ) ln(S/A0). Here, cj is a dimensionless factor de-
scribing the coupling of the cavity mode j = 1,2 to the laser
transition. The corresponding numerical FDTD results are
shown in Fig. 10. For realistic parameter values (Fig. 10),
switching times of a few tens of picoseconds can be realized
for reseeding amplitudes S as low as 0.001% of the lasing
mode amplitude A0, two to three orders of magnitude faster
than in previous devices [69].

When noise is present in the cavity, the FDTD calcula-
tions show that controlled switching is preserved as long as
the integrated seeding power exceeds the noise power inte-
grated over the lasing onset time. Otherwise, noise begins
to dominate the lasing spectrum formation. In this case, the
mode whose spatial overlap with the noise field at the onset
of lasing is larger wins the competition. The same happens
when the seeding pulse does not match the onset of lasing in
time and its field residue has smaller amplitude in compari-
son to the noise field. These numerical observations are fully
consistent with the analysis of the competition equations
(11) with the functions Fj (t) given by (13). The switching
is effective only if the influence of the seeding prevails in the
resonator at the period of time when laser radiation starts to
build up.

To summarize, the concept of switchable (rather than tun-
able) lasing in microstructures has been introduced. Instead
of externally changing the parameters of a single-mode cav-
ity, an inherently multimode cavity is used, and one of the
modes is deliberately made to be dominant for lasing by
means of injection seeding. This offers the possibility of
all-optical frequency selection and switching in microlasers
with particularly low switching times. As an example, we
have investigated the mode switching in a system of two
coupled defects in a 2D PhC lattice. For realistically chosen
parameters, a mode-to-mode switching on the picosecond
scale has been numerically demonstrated. The results are
consistent with a qualitative semianalytical model. It shows
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Fig. 10 The minimum switching time τc,min versus the re-seeding am-
plitude, normalized to the saturated lasing mode amplitude. The seed-
ing pulse duration is σt = 0.12 ps. The cavity mode decay time is
τ = 0.7 ps. The longer τc,min for switching from the bonding to the
antibonding mode is due to the nonzero gain detuning δ toward the
bonding mode frequency (see Fig. 7b)

that a resonator supporting modes with similar spatial inten-
sity profile tends towards bistability, which is the underly-
ing physical mechanism of switchable lasing. The proposed
concept is not limited to the model considered, but is ex-
pected to work in any resonator featuring bi- or multista-
bility. Any coupled cavity based system would be a good
candidate for the effects predicted.

4 Homogeneously disordered random lasers

A diffusive random laser is a system formed by randomly
distributed scatterers embedded in a host medium where ei-
ther scatterer or host medium or both provide optical gain
through stimulated emission [14]. Recent observations of
random lasing in a wide variety of systems [70–78] have
triggered a rapidly growing interest. Random lasers share
some properties with conventional lasers, like threshold be-
havior [72], narrow spectral lines [79], or photon statis-
tics [80], but also exhibit distinctly different properties like
multidirectional emission. Coherent feedback has unam-
biguously been demonstrated to be present in strongly dis-
ordered, homogeneous random lasers [80]. Its mechanism
is multiple random scattering, possibly enhanced by self-
interference of waves and the resulting onset of Anderson
localization (AL) [15]. However, the scattering mean free
path observed in these systems is by far too long for true
Anderson localization to be realized. Therefore, the physi-
cal origin of coherent feedback, the origin of the spatially
confined regions from which the laser emission takes place
[73, 79], and the dependence of their size on the pump rate
have remained controversial [79, 81, 82]. Our work provides
a theory towards explaining these phenomena.

4.1 Definition of the model

The time evolution of the electric field distribution is param-
eterized as

E(r, t) = E0(r, t) e−iωt , (14)

where ω is the laser frequency (i.e., the frequency of an
electronic transition in an atom or dye molecule associated
with the laser), and the electric field envelope E0(r, t) varies
slowly on the scale of 2π/ω. An analogous parameteriza-
tion holds for the polarization P(r, t) of the laser medium. In
class-B lasers, where the transverse relaxation rate is larger
than the resonance detuning and the longitudinal relaxation
rate [3], the polarization, P(r, t), follows the electric field
E0(r, t) instantaneously. Therefore, the lasing medium can
effectively be described by a nonlinear dielectric constant
ε(r,E0(r, t)),

D(r, t) = E(r, t) + 4πP(r, t) = ε
(
r,E0(r, t)

)
E(r, t). (15)

Observing that the time dependence of E0(r, t) is slow, the
propagation of light is then described by the wave equation,

ω2

c2
ε
(
r,E0(r, t)

)
Eω(r) + ∇2Eω(r) = −iω

4π

c2
jω(r), (16)

where c denotes the vacuum speed of light and jω(r ) an
external current source. Note that for class-B lasers the
full laser dynamics, including saturation, is incorporated
in the highly nonlinear behavior of the dielectric constant
ε(r,E0(r, t)). The spatial dependence of the latter is fur-
ther parameterized as ε(r) = εb + 	εV (r), where the di-
electric contrast between the background, εb , and the scat-
terers, εs , has been defined as 	ε = εs − εb . The spatial ar-
rangement of the scatterers is described through the function
V (r) = ∑

R SR(r − R), with SR (r ) a localized shape func-
tion at random locations R. Linear gain (absorption) is de-
scribed by a temporally constant, negative (positive) imagi-
nary part of εb and/or εs .

4.2 Diffusion, linear gain and causality

In [83–85], we have developed a theory for light transport
in disordered media with linear gain or absorption. It results
in an energy–density correlation function P ω

E (r − r′, t − t ′),
which describes how the energy density of the light field
with frequency ω propagates diffusively between two points
in space and time, (r, t), (r′, t ′). The Fourier transform of the
energy–density correlation function P ω

E (q,Ω) is obtained as

P ω
E (q,Ω) = NP

Ω + iq2D + iξ−2
a D

, (17)

where the expression for the coefficient NP is given explic-
itly in [84], but is not relevant for the present purpose. It
should be remarked that the correlator, (17), incorporates
intensity correlations induced in the optical wave dynamics
by the disorder, while quantum mechanical, spatiotemporal
correlations, originating from the stimulated emission pro-
cess in the atoms, will be neglected by using the semiclas-
sical laser rate equations below. The denominator of (17)
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exhibits the expected diffusion pole structure with the dif-
fusion coefficient D. In addition, in the case of a noncon-
serving medium, i.e., net absorption (gain), there appears the
(purely imaginary) term iγa = iξ−2

a D, which has a positive
(negative) imaginary part and does not vanish in the hydro-
dynamic limit, Ω → 0, q → 0. The self-consistent solution
of the transport theory including self-interference of waves
(Cooperon contributions) (see [84]) shows that in the pres-
ence of absorption or gain the diffusion coefficient D cannot
vanish and is in general complex. Hence, truly Anderson lo-
calized modes do not exist in this case.

For the case of absorption (γa > 0), it is seen by Fourier
transforming (17) w.r.t. time, P ω

E (q, t) = iNP e−(q2D+γa)t ,
that Reγa represents the loss rate of the photonic energy
density due to absorption in the medium. Fourier transform-
ing, on the other hand, (17) w.r.t. space in the stationary limit
(Ω → 0)) shows that ξa = Re

√
(γa/D) is the length scale

over which the energy density of diffusive modes is corre-
lated in the lossy medium.

For the case of linear gain (γa < 0), the wave equation
predicts an unlimited growth of the field amplitude, and
hence of the energy density. This means that a stationary las-
ing state is not possible in this case and, therefore, the limit
Ω → 0 must strictly not be taken in (17). Such a behavior of
linear gain is expected only during the exponential intensity
growth shortly after the onset of lasing. A complete theory
of random lasing must, therefore, take into account either
the full temporal dynamics of the system, or in a station-
ary state additional surface loss effects must compensate for
the gain in the medium (see Sect. 4.3). Nevertheless, we can
extract a characteristic size of a stationary lasing spot from
this theory by requiring that the stationary lasing state has
been reached locally, i.e., within a finite subvolume of the
system: Causality requires that the pole of P ω

E (q,Ω), (17),
as a function of Ω resides in the lower complex Ω half-
plane. For γa < 0, this is possible only if all the diffusive
modes allowed inside a given lasing spot have a wavenum-
ber q > qmin = √

Re(−γa/D). This, in turn, requires that
the spot size is [17, 18]

Rs = 2π

qmin
= 2π√

Re(−γa/D)
. (18)

It is the characteristic, maximal size of a spatial region over
which diffusive modes can be causally correlated in the sta-
tionary lasing state. We conjecture that, hence, this size is to
be identified with the lasing spot size observed experimen-
tally [73, 79] in random lasers.

More generally, despite the fact that the linear gain as-
sumption is not suited to describe stationary lasing, it can be
used to estimate the laser threshold, i.e., the critical pump
rate for lasing. Amazingly, this is a rather general remark.
For example, in a simpler system of a single microsphere

Fig. 11 The spot size Rs (18) in units of the scatterer radius r0, as
obtained by causality considerations as a function of the imaginary part
of the dielectric constant of the scatterers [17]. The parameter values
used are εb = 1, Re εs = 10, scatterer filling fraction ν = 30%, light
frequency ω/ω0 = 2.5. The light frequency is ω0 = 2πc/r0 where c

is the vacuum speed of light. The data in the inset are taken from [73]
and refer to the spot size of the modes

with gain, it has been shown [16], that the scattering coeffi-
cients calculated within linear response lose their causality
just at the point where the sphere crosses its lasing thresh-
old. Applied to our random laser system, this means that the
threshold for lasing within a spot of size Rs is reached when
the transport coefficient −γa , determined by the pump rate
via the microscopic transport theory [83, 84], reaches the
value given by (18).

In Fig. 11, we show the numerical evaluation of the spot
size Rs as a function of increasing Im εs for typical parame-
ters, as given in the figure caption. The imaginary part of the
dielectric constant is a measure of external pumping, since
the gain is given by the population inversion of the laser.
Therefore, larger pumping yields higher inversion and leads
to a larger Im εs . The calculated spot size reproduces the es-
sential features of the behavior of the experimental data [73]
(spot size vs. pump intensity normalized to the threshold in-
tensity), shown in the inset.

4.3 Selfconsistent, nonlinear theory of random lasing

As remarked above, a stationary lasing state in a homo-
geneously pumped system is possible only if the sys-
tem is finite, so that surface loss effects can compensate
the gain in the medium. To avoid the causality problem,
we consider here a three-dimensional random laser model
with a homogeneously pumped, active medium which ex-
tends infinitely in the (x, y) plane, but has a finite, con-
stant thickness d in the z direction. The laser-active ma-
terial is described by the semiclassical laser rate equa-
tions, and the light intensity transport by a diffusion equa-
tion. In particular, the rate equations for a four-level laser
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are

∂N3

∂t
= N0

τP

− N3

τ32
, (19)

∂N2

∂t
= N3

τ32
−

(
1

τ21
+ 1

τnr

)
N2 − (N2 − N1)

τ21
nph, (20)

∂N1

∂t
=

(
1

τ21
+ 1

τnr

)
N2 + (N2 − N1)

τ21
nph − N1

τ10
, (21)

∂N0

∂t
= N1

τ10
− N0

τP

, (22)

Ntot = N0 + N1 + N2 + N3, (23)

where Ni = Ni(r, t), i = 0, 1, 2, 3 are the popula-
tion number densities of the corresponding electron level
(i ∈ {1 . . .4}), Ntot is the total number of electrons par-
ticipating in the lasing process, γij ≡ 1/τij are the tran-
sition rates from level i to j , and γnr is the nonradiative
decay rate of the laser level 2. γP ≡ 1/τP is the transi-
tion rate due to homogeneous, constant, external pump-
ing. Furthermore, nph ≡ Nph/Ntot is the photon num-
ber density, normalized to Ntot. In the stationary limit
(i.e., ∂tNi = 0), the above system of equations can be
solved for the population inversion n2 = N2/Ntot to yield
(γ32 and γ10 assumed to be large compared to all other
rates)

n2 = γP

γP + γnr + γ21(nph + 1)
. (24)

The photon number density (light intensity), normalized
to Ntot, nph = Nph/Ntot, obeys the diffusion equation
[19],

∂tnph = D0∇2nph + γ21(nph + 1)n2, (25)

where the last term on the r.h.s. describes the intensity in-
crease due to stimulated and spontaneous emission, as de-
scribed by the semi-classical laser rate equations. Since in
the slab geometry ensemble-averaged quantities are transla-
tionally invariant in the (x, y) plane, but not along the z di-
rection, a Fourier representation in the (x, y) plane in terms
of nph(q‖, z), n2(q‖, z) is convenient,

∂tnph = −D0q
2‖nph + D0∂

2
z nph

+ γ21

∫
d2q ′‖
(2π)2

nph
(
q‖ − q′‖, z

)
n2

(
q′‖, z

) + γ21n2.

(26)

We now determine the photon density response function
P(q‖, z,Ω), which describes the response of the pho-
ton density, nph, to the distribution of the population in-
version, n2, in order to determine the transport coeffi-
cients. In the stationary case (∂tnph = 0) and in the long-
wavelength limit along the (x, y) plane (q‖ → 0), the z

derivative in (26) can be expressed without derivatives in
terms of nph and n2 only. Plugging this back into (26)
yields,
[
∂t + D0q

2‖ + γ21n2

nph

]
nph(q‖,z, t) = γ21n2(q‖,z, t) (27)

and hence after Fourier transform w.r.t. time, the diffusion
form of the density response function,

PE(q‖, z,Ω) = iγ21

Ω + iq2‖D0 + iξ−2D0
, (28)

where from (27) the correlation length ξ is defined as the
real, positive quantity,

ξ =
√

D0

γ21

nph

n2
. (29)

As seen from (28), the pole structure in this finite-size, dif-
fusive system is perfectly causal. The square of the corre-
lation length ξ remains positive, indicating an effective loss
out of a given q‖ mode. This is due to the loss of inten-
sity at the surfaces. Additionally, the mass term becomes
less and less significant as the laser intensity in the sample
builds up, because the relative population inversion clearly
obeys n2 ≤ 1 whereas the relative photon number is not re-
stricted.

Since for homogeneous pumping the averaged photon
density does not depend on x or y, (26) simplifies in the
stationary limit to

D0∂
2
z nph = −γ21(nph + 1)n2 (30)

and nph(z) is finally determined via (24) by the regular dif-
ferential equation,

∂2
z nph(z) = −γ21

D0

(γP /γ21)

1 + (γP /γ21)
nph(z)+1

. (31)

Equations (31), (24), and (29) comprise the complete de-
scription of the spatial photon density profile perpendicular
to the lasing film and the intensity correlation length (spot
size) parallel to the film.

Numerical evaluations of (31), (29), and (24) are shown
in Figs. 12 and 13. In Fig. 12, the photon number nph(z),
population inversion n2(z) and correlation length ξ(z) are
shown as a function of z for different values of external
pumping, characterized by the pumping rate γP . The value
of the diffusion constant was chosen to be D0 = 1d2γ21,
where d is the width of the film. In panel a) of Fig. 12, the
photon number displays a monotonically increasing behav-
ior with increasing pumping. The maximum of the intensity
resides in the center of film (z = 0), since this is the posi-
tion farthest from the boundaries and, therefore, with lowest
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Fig. 12 The following quantities are shown as a function of z for
different values of the pump rate P : (a) the photon number, which
increases monotonically with increasing pump rate and has its maxi-
mum in the film center (z = 0); (b) the population inversion, which is
inverse proportional to nph, see (24); (c) the correlation length (spot
size), which clearly behaves nonmonotonically with increasing pump-
ing. The diffusion constant in all panels is D0 = 1d2γ21

Fig. 13 The figure shows the following quantities as a function of the
pumping rate P at the film surface (z = ±0.5d): (a) the photon num-
ber which displaying saturation for strong pumping; (b) the population
inversion, also saturating; (c) the correlation length (spot size) showing
nonmonotonic behavior (discussion in the text)

loss of intensity. The population inversion, (24), behaves in-
verse to nph(z); see (24). In contrast to this rather expected
behavior, the correlation length ξ(z) as given by (29) ex-
hibits a nonmonotonic behavior with increasing pumping.
For pumping rates γP < γ21, the correlation length increases
but for pumping rates γP > γ21, ξ is decreasing. The equal-

ity between γP and γ21 marks the situation where electrons
are as fast excited into the upper laser level as they relax-
ate to lower levels. Therefore, this characterizes the lasing
threshold. Available experimental data [73, 79] also report a
decreasing behavior of the spot size above threshold. Mea-
surements of the intensity correlation length below threshold
have not been reported yet.

The same quantities are shown Fig. 13 as a function of
external pumping at the surface of the random laser. Pho-
ton number and population inversion both display satura-
tion behavior. Panel c of Fig. 13, however, exhibits the non-
monotonic behavior of the correlation length. This plot is
to be directly compared to experimental data [73] as, e.g.,
shown in the inset of Fig. 12. There is a good qualitative and
even quantitative agreement between calculated and mea-
sured spot size.

5 Extension of semiclassical microlaser theory to
arbitrary nonlinearity

In the standard semiclassical laser theory [2, 3], lasing
modes are usually taken to coincide with quasimodes of the
respective cavities, while their amplitudes and frequencies
are found from equations based on perturbation expansions
containing terms linear and cubic in the field. In random
lasers, this picture needs to be revised. It was shown [20,
21] that normal modes in the presence of gain differ from
the passive modes even in the linear approximation, if the
refractive index and/or unsaturated population inversion are
nonuniform. Furthermore, it was realized [86–88] that the
self- and cross-saturation coefficients before the cubic terms
can have different statistical properties in different systems,
leading to different mode statistics. Finally, it was pointed
out [22, 23] that nonlinear effects can significantly con-
tribute to modification of the lasing modes compared to
those of the empty cavity.

In [24], we carried out the perturbation expansion up to
the infinite order in the field keeping all the terms which do
not have fast temporal oscillations. To that end, a novel di-
agram technique was developed which allows for a system-
atic classification of all terms of the expansion. In contrast
to the approach of [22, 23], no assumption of constant pop-
ulation inversion was introduced. In the following, starting
from the semiclassical laser equations, we review the dia-
grammatic technique and the first application of the infinite-
order expansion to the case of chaotic gas lasers where, due
to the thermal motion of the atoms, the Doppler shift of the
emission frequencies is not small.

5.1 Semiclassical laser equations

In the semiclassical theory of lasers [2, 3], the fields are de-
scribed classically at the level of Maxwell equations and the
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active medium is treated by quantum mechanics. To this end,
the wave equation for the electric field E(r, t) is written with
a source term, the polarization P(r, t) of the gain medium:

ε(r)
∂2

∂t2
E − ∇2E = −4π

∂2

∂t2
P(r, t). (32)

Here ε(r) is the (real) dielectric constant and we use the
units where the velocity of light c = 1. In the simplest
model, the active medium is a collection of homogeneously
broadened two-level atoms. Their state is fully described
by P(r, t) and the population-inversion density 	n(r, t)
(difference between populations of the upper and lower lev-
els per unit volume). These functions satisfy the equations
of motion [3]

(
∂2

∂t2
+ 2γ⊥

∂

∂t
+ ν2

)
P = −2ν

d2

�
E(r, t)	n(r, t), (33)

∂

∂t
	n − γ‖

[
	n0(r, t) − 	n

] = 2

�ν
E(r, t)

∂

∂t
P (r, t), (34)

where d is the magnitude of the atomic dipole matrix ele-
ment, ν is the atomic transition frequency, and γ⊥ (γ‖) is the
polarization (population-inversion) decay rate. If the right-
hand side of (34) vanishes, 	n relaxes to the unsaturated
population inversion 	n0(r, t), which is a measure of the
pump strength. The coupled equations (32)–(34) determine,
in principle, the electric field in the system, if 	n0(r, t) is
given.

In a system with Nm lasing modes the electric field can
be approximately represented as a sum of oscillating terms

E(r, t) = Re
Nm∑
l=1

El(r, t)e−iωl t , (35)

where ωl is the frequency of mode l and El(r, t) is its slowly
varying amplitude. It is convenient to expand the electric
field in an open cavity in a biorthogonal basis as

El(r, t) = ε−1/2(r)
∑

k

alk(t)ψk(r,ωl), (36)

alk(t) =
∫

dr ε1/2(r)φ∗
k (r,ωl)El(r, t), (37)

where ψk(r,ω) and φk(r,ω) are the biorthogonal basis
modes parameterized by the frequency [22].

Equations (32)–(34) can be reduced to an equation for
the electric field alone using perturbation theory in the field
amplitude. In particular, one needs to construct an expan-
sion of P(r, t) in the (odd) powers of the field using (33)
and (34). Then this expansion is substituted in (32) produc-
ing the required equation for the field. In the conventional
laser theory [2, 3], P(r, t) is expanded up to the third or-
der in E(r, t), which yields the saturation terms in the rate

equations. Here, we carry out the expansion up to an arbi-
trary order in the field’s amplitude and use a diagrammatic
method to sort out the respective terms.

The perturbative expansion of (32)–(34) yields equations
for the coefficients alk(t):
[
−i

d

d
t + Ωk(ωl) − ωl

]
alk(t)

= 2πν
∑
k′

alk′(t)
∫

dr ε−1(r)φ∗
k (r,ωl)ψk′(r,ωl)ηl(r, t),

(38)

where Ωk(ω) are complex eigenfrequencies (similar to res-
onances) corresponding to the basis modes ψk(r,ω) and
φk(r,ω). The right-hand side has a nonlinear dependence
on the electric field via the susceptibility in the mode l,

ηl(r, t)

≡ Pl(r, t)
El(r, t)

= 2i�γ‖D(ωl)	n0(r)
∑
q odd

A
q+1

2

×
∑r

l1,...,lq

∣∣El2(r, t)
∣∣2∣∣El4(r, t)

∣∣2 · · · ∣∣Elq−1(r, t)
∣∣2

× D‖(ωl1 − ωl2)D‖(ωl1 − ωl2 + ωl3 − ωl4) · · ·
× D‖(ωl1 − ωl2 + · · · + ωlq−2 − ωlq−1)

× [
D(ωl1) + D∗(ωl2)

]
× [

D(ωl1 − ωl2 + ωl3) + D∗(ωl2 − ωl1 + ωl4)
] · · ·

× [D(ωl1 − ωl2 + ωl3 − · · · − ωlq−3 + ωlq−2)

+ D∗(ωl2 − ωl1 + ωl4 − · · · − ωlq−4 + ωlq−1)], (39)

where

A ≡ − d2

2�2γ⊥γ‖
, (40)

D(ω) ≡
[

1 − i
ω − ν

γ⊥

]−1

, (41)

D‖(ω) ≡
[

1 − i
ω

γ‖

]−1

. (42)

The order of nonlinearity q determines the number of differ-
ent indices li , which take values from 1 to Nm. The super-
script “r” at the sum symbol specifies that the possible values
of the indices are restricted by the resonance condition

ωl1 − ωl2 + ωl3 − · · · − ωlq−1 + ωlq − ωl = 0, (43)

which ensures cancellation of fast oscillating terms. In the
absence of accidental degeneracies, this condition implies
that each of the indices l1, l3, . . . , lq must be equal to one of
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Fig. 14 Labeling of vertices in
a diagram of order q = 1,3, . . .

Fig. 15 First-order diagram (a)
and third-order diagrams (b, c)

the indices l2, l4, . . . , lq−1, l. This leads, in particular, to the
appearance of absolute squares of the field in the first line
of (39).

The nonlinear equations (38) have to be solved in a self-
consistent way to determine the number of modes Nm, their
frequencies ωl , and the coefficients alk(t).

5.2 Diagrammatic technique

We use diagrams to classify different pairing possibilities for
the lasing mode indices l1, l2, . . . , lq , l in the perturbation se-
ries (39). To construct a diagram X̃0

qj of order q = 1,3, . . . ,
we place q + 1 vertices in two columns as shown in Fig. 14.
The left vertices are labeled l1, l3, . . . , lq and the right ver-
tices are labeled l2, l4, . . . , lq−1, l. The vertex l is different
from the other vertices, because there is no summation over
the index l in (39). After that, each vertex on the left is
connected with exactly one vertex on the right. The index
j = 1, . . . , Ñq labels all distinct connection possibilities in
an arbitrary order. To obtain all diagrams of order q , we can
first connect the vertices by (q + 1)/2 horizontal links and
then reshuffle the vertices, say, on the left without cutting
the links. Thus, the number of possible diagrams of order q

is the number of permutations Ñq = [(q + 1)/2]!. The dia-
grams for q = 1,3 are shown in Fig. 15.

Each diagram specifies a particular contribution to the se-
ries (39). The latter will be written in the form

ηl(r, t) = 2i�γ‖	n0(r)D(ωl)Xl , (44)

Xl ≡
∑
q odd

A
q+1

2

Ñq∑
j=1

X̃0
qj , (45)

where each X̃0
qj represents a partial sum in

∑r
(· · · ), (39), in

which pairs of indices are chosen to be equal to each other
according to the links connecting respective vertices in the
diagram. For example, the first three diagrams correspond to
the following expressions:

X̃0
11 =1, (46)

X̃0
31 =

∑
l2 �=l

∣∣El2(r, t)
∣∣2

D‖(ωl − ωl2)
[
D(ωl) + D∗(ωl2)

]
,

(47)

X̃0
32 =

∑
l2

∣∣El2(r, t)
∣∣2 2 Re

[
D(ωl2)

]
. (48)

The restriction l2 �= l in the diagram X̃0
31 excludes the term

with l1 = l2 = l3 = l, which enters X̃0
32. In general, the terms

with more than two indices equal belong to the diagram in
which the links connecting these indices do not cross each
other.

A diagram is called connected, if it cannot be cut by a
horizontal line without cutting a link. For instance, the di-
agrams X̃0

11 and X̃0
31 are connected, whereas the diagram

X̃0
32 is disconnected. To simplify the notation, we ordered

all connected diagrams before the disconnected diagrams for
given q . We will label connected diagrams as X0

qj , with

X0
qj = X̃0

qj , j = 1, . . . ,Nq, (49)

where Nq (<Ñq ) is the number of connected diagrams.
The horizontal cuts separate disconnected diagrams into one
connected diagram containing the vertex l (denoted by an
unfilled dot in the graphic representation) and several con-
nected subdiagrams without such vertex. The latter subdia-
grams will be denoted as Xqj , j = 1, . . . ,Nq , where q + 1
is the number of vertices in the subdiagram. In place of the
vertex l, these diagrams have a vertex with the index lq+1

which runs over all lasing modes, as the other indices lj .
For example,

X11 =
∑
l2

∣∣El2(r, t)
∣∣2 2 Re

[
D(ωl2)

]
, (50)

X31 =
∑
l2,l4
l2 �=l4

∣∣El2(r, t)
∣∣2∣∣El4(r, t)

∣∣2

× D‖(ωl4 − ωl2)
[
D(ωl4) + D∗(ωl2)

]2
. (51)

Note that Xqj is of the order q + 1 in the electric field. Con-
nected diagrams contain (q − 1)/2 factors D‖ �= 1.

The diagrammatic technique possesses the basic property
that disconnected diagrams are given by products of their
connected parts, e.g., X̃0

32 = X0
11 X11. The multiplicativity is

due to the fact that the resonance condition of the type (43)
is fulfilled for each connected subdiagram. The multiplica-
tivity property allows one to express the series (45) in terms
of the connected diagrams as

Xl =
( ∑

q odd

Nq∑
j=1

X0
qj

) ∞∑
m=0

( ∑
q odd

Nq∑
j=1

Xqj

)m
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=
∑

q odd
∑Nq

j=1 X0
qj

1 − ∑
q odd

∑Nq

j=1 Xqj

. (52)

The contributions X0
qj and Xqj contain the terms of the

power q − 1 and q + 1 in the field, respectively. They are of
the order (q − 1)/2 in the small parameter γ‖/γ⊥ due to the
factors D‖(ωl −ωl′) ∼ γ‖/(ωl −ωl′) ∼ γ‖/γ⊥. This parame-
ter is a measure of the importance of taking into account the
population oscillations in the laser equations. Thus, (52) is
a perturbation expansion in γ‖/γ⊥, but it takes into account
the amplitudes of the electric field up to infinite order.

The known special cases can be reproduced with the help
of (52). To obtain an approximation to Xl of the third-order
in the field, we keep the diagrams X0

11 and X0
31 in the nu-

merator and the diagram X11 in the denominator of (52) and
expand the latter:

Xl ≈ X0
11 + X0

11X11 + X0
31. (53)

In the approximation of constant population inversion only
the diagrams X0

11 and X11, which do not contain the D‖
functions, contribute to Xl . With the help of (52) it is
straightforward to write out the corrections due to the popu-
lation pulsations. The terms of the first order in D‖ � 1 are
contained in the diagrams X0

31 and X31, so that Xl can be
approximated as

Xl ≈ X0
11 + X0

31

1 − X11 − X31
. (54)

5.3 Semiclassical theory of a gas laser

The generalized semiclassical laser theory (up to the third
order in the field) was applied to gas lasers with wave-
chaotic resonators in [25]. Gas lasers can emit light at fre-
quencies that differ from the atomic transition frequency by
more than a homogeneous linewidth γ⊥ [2, 3]. This property
is a consequence of the coherent amplification by moving
atoms that interact with the electric field at Doppler-shifted
frequencies. The inhomogeneous linewidth is approximately
q0v � γ⊥, where q0 = √

εν/c is the wavenumber at the
atomic transition frequency and v is the average velocity of
atoms.

The notion of a chaotic system implies that the shape of
the resonator does not permit a separation of variables in the
wave equation and the relevant modes have a typical wave-
length λ much smaller than the system size. The classical ray
dynamics, defined in the short-wavelength limit, is assumed
to be ergodic, i.e., the generic ray trajectories fill densely
the available phase space. The eigenmodes of a chaotic res-
onator are spatially uncorrelated outside of the correlation
volume ∼λ3, i.e., 〈ψk(r)ψk(r′)〉 = 0 if |r − r′| � λ. The
eigenfunctions of the resonator can be locally approximated

Fig. 16 Relative intensity of the single lasing mode for the two-dimen-
sional (2D) chaotic laser (thick curves) and a one-dimensional (1D)
laser (thin curves) as a function of the frequency separation 	ω from
the atomic-line center. The scaling of 	ω for these systems differs
by a factor of

√
2. Relative homogeneous linewidth γ⊥/q0v = 0.01

(solid curves), 0.04 (dashed curves), and 0.07 (dash-dotted curves).
The pump strength parameter 	n0 is 30% above the threshold value.
I0 is defined as I1(ν) extrapolated to 	n0 → ∞

by a superposition of plane waves with a fixed wavelength
propagating in random directions.

If a resonance frequency of the cavity is continuously
changed, the intensity of the single mode has a mini-
mum at the atomic frequency (Fig. 16). In uniaxial (quasi-
one-dimensional) cavities this minimum, called the Lamb
dip [89], has a width of ∼γ⊥. In two-dimensional weakly
open cavities of chaotic geometry, the width of the mini-
mum is comparable to the inhomogeneous linewidth q0v. In
Fig. 16, the scaling of the minimum width with γ⊥ can be
clearly seen for a one-dimensional laser, whereas the scaling
is absent in two dimensions [25].

6 Conclusion

To summarize, spatially confined modes and field distribu-
tions with finite correlation length play important roles in
photonic systems, let them be cavity or defect modes in pho-
tonic crystals, lasing spots in diffusive random lasers, or the
lasing modes in chaotic microlaser cavities. To describe such
systems with localized field distributions, a large variety of
theoretical methods is needed, due to their different physical
nature.

For localized modes in spatially periodic systems, we
have put forward and analyzed a new optimization scheme
for the construction of maximally localized Wannier func-
tions. We analyzed bistable lasing and the switching dynam-
ics in multimode photonic crystal microcavities, using ana-
lytical equation of motion techniques in a two-mode approx-
imation as well as the numerically rigorous finite difference
time domain (FDTD) method.

For homogeneously disordered random laser media, we
have provided an answer to the long-standing problem of
the origin of the finite-size lasing spots using a new trans-
port theory for the spatial intensity correlations, coupling the
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diffusive photon transport equations in the random medium
self-consistently to the laser rate equations. In this way, we
were able to predict the dependence of the average lasing
spot size on the pump rate, which may be tested experimen-
tally.

Finally, a diagrammatic perturbation theory was devel-
oped which allows to calculate physical quantities systemat-
ically to arbitrary order in the laser nonlinearity. While this
theory is general, it is especially suitable for microlasers,
where the field intensity varies usually on the scale of the
wavelength of light, so that the laser nonlinearity induces
strong renormalizations of physical quantities (like micro-
cavity resonance frequencies) with respect to the passive
system, which may cannot be treated in low order pertur-
bation theory. We applied the theory first to the case of gas
lasers, where strong resonance detuning may occur due to
the Doppler shift of the atomic transition lines.
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