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We present a quantum field theoretical method for the characterization of disordered complex media with
short laser pulses in an optical coherence tomography setup (OCT). We solve this scheme of coherent transport
in space and time with weighted essentially nonoscillatory methods (WENO). WENO is preferentially used
for the determination of highly nonlinear and discontinuous processes including interference effects and phase
transitions like Anderson localization of light. The theory determines spatiotemporal characteristics of the
scattering mean free path and the transmission cross section that are directly measurable in time-of-flight (ToF)
and pump-probe experiments. The results are a measure of the coherence of multiple scattering photons in
passive as well as in optically soft random media. Our theoretical results of ToF are instructive in spectral
regions where material characteristics such as the scattering mean free path and the diffusion coefficient are
methodologically almost insensitive to gain or absorption and to higher-order nonlinear effects. Our method is
applicable to OCT and other advanced spectroscopy setups including samples of strongly scattering mono- and
polydisperse complex nano- and microresonators.
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I. INTRODUCTION

The characterization of disordered media has been fasci-
nating the community ever since, and groundbreaking analysis
methods such as coherent backscattering (CBS) [1], dynamic
light scattering (DLS) [2–7], diffusing wave spectroscopy
(DWS) [8], and optical coherence tomography (OCT) [9–14]
have been developed on the basis of transport of classical
electromagnetic waves in random media and photonic crys-
tals [1,15,16]. Classical methods in the time (TD-OCT) and
in the frequency domain (SD-OCT) have been generalized
with great success for polarization-sensitive optical coher-
ence tomography [17–20], applications in metrology [21–24],
and optomedical imaging [25–27]. Sub- and hyperdiffusive
random media [28] have attracted a great deal of inter-
est. Quantum-optical coherence tomography (QOCT) using
entangled-photon-sources in a Hong-Ou-Mandel interferom-
eter [29,30] has been demonstrated [31–33]. It yielded an
improvement of the resolution of a factor of 2 compared to
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OCT. Probing the submicron-scale characteristics of transport
of light is a crucial aspect in the understanding of dynamic
properties of disordered random media [34–36]. Many of
these approaches, however, do not account for multiple scat-
tering at all, and thus self-interference effects which can yield
up to a factor of 2 enhancement of coherently scattered light
with respect to the incoming intensity in passive scatterers
ensembles [1], the CBS peak, are neglected. All these meth-
ods have in common a systematic incorporation of multiple
scattering processes of light by optically soft scatterers, so
the decoherence of light due to light-matter interaction, ab-
sorption, all orders of nonlinear processes [37], and scattering
losses are not incorporated in a systematic way [7,38–40].
The range from weakly to strongly scattering nonconserving
media so far is not covered by a systematic methodology
[41–44] while quantitative fluorescence spectroscopy (QFS)
in the time and the frequency regime is broadly investigated in
turbid media and soft matter [45]. Technological applications
in solid state physics and soft matter such as novel light
sources, random lasers and solar cells based on multiple
scattering in disordered arrangements of active resonators
may profit from such novel techniques [46–49]. Noninvasive
and nondestructive methods of optical analysis and medical
imaging that can detect reflected signals as small as 10−10

of the incident intensity and beyond [9,11–14] might be
improved again by orders of magnitude. Their application
range could be systematically improved in the fields of
dynamic and nonconserving media, nematic liquid crystals,
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semiconductors for telecommunications applications, glasses,
and tissue [34,50–53].

In this article we develop a quantum field theory for pho-
tonic transport in dense multiple scattering complex random
media [see Fig. 1(a)]. The Bethe-Salpeter equation, which
governs the propagation of the intensity [54,55], is solved
for a propagating short laser pulse in random media with the
help of a weighted essentially nonoscillatory solver (WENO)
[56–61] in the space- and time-dependent framework [62]
[Fig. 1(c)]. We are going beyond the diffusion approximation
by including interferences and repeated self-interferences in
the sense of all orders of maximally crossed diagrams, the
Cooperon [63,64]. This is generally associated with the An-
derson transition of electrons as well as of light, sound, and
matter waves in multiple scattering random media [65–78],
and thus with quantum effects [63,64]. The random medium
is assumed to be optically complex and we are including
nonlinearities, absorption and gain, which in consequence
request the implementation of suitable conservation laws by
means of the Ward-Takahashi identity for nonconserving me-
dia and resonators. The random medium can be comprised of
ensembles of arbitrarily shaped particles as well as correlated
disorder and glassy systems in principle [79]. We focus in this
work on independent nonconserving Mie scatterers [80,81]
in strongly scattering ensembles of a high filling fraction,
for instance, mono- and polydisperse complex TiO2 powders
[82,83]. Such ensembles are well known for showing a pro-
nounced Mie signature in their transport characteristics such
as the scattering mean free path, as it has been determined
experimentally also by coherent backscattering for optically
passive systems [1,16,41] [Fig. 1(d)].

We derive in what follows self-consistent results for con-
serving and for nonconserving random media and we show
that absorption and gain or nonlinearities can be character-
ized in a time-of-flight experiment (ToF) by the fraction of
transmitted photons which experience a delay due to coherent
multiple scattering. It will be shown that the deviation in the
long-time limit from the pure diffusive case provides funda-
mental knowledge about the subtle nature of the scattering
ensemble and its complexity in the sense of the resonator
properties of the single scatterer.

II. QUANTUM FIELD THEORY FOR MULTIPLE
SCATTERING OF PHOTONS

A. Nonlinear response

The electrodynamics for transport of light in random media
is described basically by the wave equation

� �E − 1

c2

∂2 �E
∂t2

= 1

c2ε0

∂2 �P
∂t2

, (1)

where the polarizability in bulk matter �P( �E ) can be decom-
posed into linear and nonlinear parts

�P = ε0[χ (1) �E + (χ (2) �E ) �E + ((χ (3) �E ) �E ) �E + · · · ]

= �PL + �PNL. (2)

As opposed to the nonlinear Schrödinger equation for mat-
ter waves [84], in the presented quantum field theoretical
formalism the wave equation allows for the straightforward

FIG. 1. (a) Characterization of disordered random media and
mono- and polydisperse Mie scatterers. (b) Gaussian distribution
of scatterers’ radii. (c) Quantum field theoretical approach, self-
consistent Bethe-Salpeter equation including the Cooperon. (d) Ex-
perimental setup of forward scattering and backscattering. The dis-
cussion is found in the Introduction.
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incorporation of the Mie resonance [85] as a classical geo-
metrical effect in the sense of a whispering gallery resonance
of the light wave at the inner surface of the complex
scatterer [86]. In general, the polarizability is defined as
�P( �E ) = ε0(ε1 − 1) �E + �PNL, where ε0 is the dielectric con-
stant in free space, ε is defined in the literature as the material-
specific dielectric coefficient ε = 1 + χ , and c is the speed of
light. Higher-order processes, for instance, Kerr media [37]
with the dielectric susceptibility χ (2) [82,83], are in electro-
dynamics classified by the dependence of �P on the electrical
field �E [87] without loss of generality. It is well known that
both the conductivity and the susceptibility contribute to the
permittivity, so in general Imε = Im(χ ) + Re(σ/ω) is given.
Absorption and optical gain are represented by a finite positive
or negative imaginary part of the dielectric function, so in
general Imε �= 0 is assumed. We take into account the Mie
scatterer (Fig. 1) for the determination of the single-particle
self-energy contribution �ω

�k of the quantum field theoretical
approach in what follows. The Mie scattering coefficients of
n-th order are written as [85,88]

an = m	n(my)	 ′
n(y) − 	n(y)	 ′

n(my)

m	n(my)ξ ′
n(y) − ξn(y)	 ′

n(my)
,

bn = 	n(my)	 ′
n(y) − m	n(y)	 ′

n(my)

	n(my)ξ ′
n(y) − mξn(y)	 ′

n(my)
, (3)

where m denotes the complex refractive index, y = 2πrscat/λ

is the size parameter, λ is the wavelength of light, and rscat is
the sphere radius. Prime denotes the derivative with respect
to the argument of the function. Here 	n and ξn are Riccati-
Bessel functions defined in terms of the spherical Bessel
function and in terms of the Hankel function [85,88]. The
characteristics of the active scatterer and the active embedding
matrix are described by Imεscat and Imεb in the following.

B. Self-consistent Bethe-Salpeter equation for inelastic
multiple scattering of photons

For the theoretical description we may use any distribution
and shape of particles which may be described in the form of
a scattering matrix. Here we consider in our results monodis-
perse spheres as well as a Gaussian distribution of spher-
ical scatterers located at random positions [75–77,89–96]
(see Fig. 1). The scatterers and the background medium are
described by the dielectric constants εscat and εb, respectively.
In this work we use unpolarized light and therefore we
consider the scalar wave equation which has been Fourier
transformed from time t to frequency ω and reads

ω2

c2
ε(�r )	ω(�r ) + ∇2	ω(�r ) = −iω

4π

c2
jω(�r ), (4)

where c denotes the vacuum speed of light and jω(�r ) the
current. The current jω(�r ) may be expanded in orders of ω

[97,98]. We do not take into account here a coupling to a
microscopic model for dynamical feedback of the optically
driven crystal in the nonequilibrium [99–101], or to chaos
modulations and chaotic systems [102]. The dielectric con-
stant is spatially dependent, ε(�r ) = εb + �εV (�r ), and the
dielectric contrast is defined as �ε = εscat − εb. The dielectric
contrast describes in principle the arrangement of scatterers

through the function V (�r ) = ∑
�R S �R(�r − �R), with S �R(�r ) a

localized shape function at random locations �R.
The intensity is related to the field-field correlation func-

tion 〈	(�r, t )	∗(�r ′, t ′)〉, where angular brackets denote the
ensemble or disorder average. To calculate the field-field cor-
relation, the Green’s function formalism is used; the (single-
particle) Green’s function is related to the (scalar) electrical
field by

	(�r, t ) =
∫

d3r′
∫

dt ′G(�r , �r ′; t, t ′) j(�r ′, t ′). (5)

The Fourier transform of the retarded, disorder-averaged
single-particle Green’s function of Eq. (4) reads

Gω
�q = 1

εb(ω/c)2 − |�q |2 − �ω
�q
, (6)

where the retarded self-energy �ω
�q arises from scattering of

the random potential −(ω/c)2(εscat − εb)V (�r ). Using Green’s
functions mode density, the local density of photonic states
(LDOS), N (ω) may be expressed as N (ω) = −(ω/π )ImGω

0 ,
where we use the abbreviation Gω

0 ≡ ∫
d3q/(2π )3Gω

�q . We
study the transport of the already introduced field-field
correlation by considering the four-point correlator, defined
in terms of the nonaveraged Green’s functions Ĝ and
Ĝ∗ in momentum and frequency space as ω

�q �q ′ ( �Q,�) =
〈Ĝω+

�q+ �q ′+
Ĝω−∗

�q ′− �q−
〉. Here we introduced [86] the center of mass

and the relative frequencies (� and ω) and momenta ( �Q
and �q ) with ω1,2 = ω ± �/2 and �q1,2 = �q ± �Q/2. The
variables � and �Q are associated with the time and the
position dependence of the averaged energy density, with
Q̂ = �Q/| �Q|, while ω± = ω ± �/2, �q± = �q ± �Q/2, etc., are
the frequencies and momenta of ingoing and outgoing waves,
respectively. The intensity correlation, the disorder-averaged
particle-hole Green’s function ω

�q �q′ ( �Q,�), is described by
the Bethe-Salpeter equation

�q �q ′ = GR
q+ (ω+)GA

q− (ω−)

×
[
δ(�q − �q ′) +

∫
d3q′′

(2π )3
γqq′′�q ′′ �q ′

]
. (7)

By utilizing the averaged single-particle Green’s function
[cf. Eq. (6)] on the left-hand side of Eq. (7), the Bethe-Salpeter
equation may be rewritten as the kinetic equation (see, e.g.,
Ref. [86])[

ω�
Reεb

c2
− Q(�q · Q̂) + i

c2τ 2

]
ω

�q �q ′

= −i ImGω
�q

[
δ(�q − �q ′) +

∫
d3q′′

(2π )3
γ ω

�q �q ′′
ω
�q ′′ �q ′

]
. (8)

When we analyze the correlation function’s long-time
(� → 0) and long-distance (| �Q| → 0) behavior, terms of
O(�2, Q3,�Q) are neglected. Equation (8) contains the total
quadratic momentum relaxation rate 1/τ 2 = c2Im(εbω

2/c2 −
�ω ) due to absorption/gain and due to impurity scattering in
the background medium as well as the irreducible two-particle
vertex function γ ω

�q �q ′ ( �Q,�). In order to solve this equation, we
expand it into moments.

The energy conservation is implemented in the solution of
the Bethe-Salpeter equation by a Ward identity (WI) for the
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photonic case (see Ref. [86]). The Ward identity is derived in
the generalized form for the scattering of photons in noncon-
serving media. Nonlinear effects, absorption and gain, yield
an additional contribution, and a form of the Ward-Takahashi
identity for photons in complex matter [86,103,104] is de-
rived. The additional contribution is not negligible and thus
effectively present in all results of the transport characteristics
of the self-consistent framework [54,55,86]. For scalar waves
the Ward identity assumes the exact form

�
ω+
�q+

− �
ω−∗
�q−

−
∫

d3q′

(2π )3

[
Gω+

�q ′+
− Gω−∗

�q ′−

]
γ ω

�q ′ �q( �Q,�)

= fω(�)

[
Re�ω

�q +
∫

d3q′

(2π )3
ReGω

�q ′γ
ω
�q ′ �q( �Q,�)

]
. (9)

The right-hand side of Eq. (9) represents reactive effects
(real parts), originating from the explicit ω2 dependence of
the photonic random potential. In conserving media (Imεb =
Imεscat = 0) these terms renormalize the energy transport
velocity vE relative to the average phase velocity cp without
emphasizing the diffusive long-time behavior [86,105]. In the
presence of loss or gain, additional effects are enhanced by the
prefactor

fω(�) = ω� Re�ε + iω2Im�ε

ω2Re�ε + iω� Im�ε
, (10)

which now does not vanish in the limit of � → 0.

C. Expansion of the two-particle Green’s function into moments

The solution of the Bethe-Salpeter equation is derived
by rewriting it in the form of a kinetic equation and by
deriving a continuity equation. For this aim we expand the
intensity correlator into its moments and we extract a diffusion
pole structure from the Bethe-Salpeter equation (7). The �q ′
integrated correlator

�q =
∫

d3q′

(2π )3
�q �q ′ (11)

is decoupled from the momentum dependent prefactors by
some auxiliary approximation scheme. This approximation
must obey the results of the ladder approximation and it
must incorporate the set of physical relevant variables for the
observed phenomena. In a first step we use the bare first two
moments of the correlation function �q defined as

ρρ ( �Q,�) =
∫

d3q

(2π )3

∫
d3q′

(2π )3
�q �q ′ , (12)

 jρ ( �Q,�) =
∫

d3q

(2π )3

∫
d3q′

(2π )3
(�q · Q̂)�q �q ′ . (13)

These bare moments are related to physical quantities, the
energy density correlation Pω

E ( �Q,�) and the current density
correlation Jω

E ( �Q,�), by dimensional prefactors:

Pω
E ( �Q,�) =

[
ω

cp

]2

ρρ ⇔ ρρ =
[

cp

ω

]2

Pω
E ( �Q,�), (14)

Jω
E ( �Q,�) =

[
ωvE

cp

]
 jρ ⇔  jρ =

[
cp

ωvE

]
Jω

E ( �Q,�). (15)

The projection of the correlator �q [Eq. (11)] onto the bare
moments ρρ (�q,�), as in Eq. (12), and  jρ (�q,�), as in

Eq. (13), is then by∫
d3q′

(2π )3
�q �q ′ = A(�q )∫ d3q′

(2π )3 A(�q ′)
ρρ ( �Q,�)

+ B(�q )(�q · Q̂)∫ d3q′
(2π )3 B(�q ′)(�q ′ · Q̂)2

 jρ ( �Q,�). (16)

The projection coefficients A(�q ) and B(�q ) are to be deter-
mined in the following. In this expansion the bare moments
may be substituted by their physical counterparts, the energy
density Pω

E in Eq. (14) and the current density Jω
E ( �Q,�)

from Eq. (15). The expansion coefficients A(�q ) and B(�q )
in Eq. (16) behave uncritically when the system localizes.
Thus they can be determined by using the simple ladder
approximation, where all expressions are known exactly. The
ladder approximation of the two-particle vertex function is
schematically explained in [54,55,86].

In the following we use the approximation to obtain the
expansion coefficients from it. In the ladder approximation the
zeroth bare moment is given by

L
ρρ ( �Q,�) =

∫
d3q

(2π )3
[G�q+ ( �Q,�)G∗

�q− ( �Q,�)]2�L = 1

γ̃ 2
0

�L,

(17)

where the superscript L refers to the ladder approxima-
tion. The product

∫ d3q
(2π )3 [G�q+ ( �Q,�)G∗

�q− ( �Q,�)]2 has been
expanded up to linear order in �q. The renormalized vertex γ̃0

is given by

γ̃0 = γ0 + fω(�)
(Reγ0G0 + Re�)

Im G0
− ω2Im εb

Im G0
, (18)

where γ0 is the bare vertex. The fω(�) is arising from the
Ward identity and has been defined in Eq. (9). Within the
simple ladder approximation the bare moment L

jρ ( �Q,�)
defined in Eq. (13) is thus given by

L
jρ ( �Q,�) =

∫
d3q

(2π )3
(�q · Q̂)G�q+G∗

�q−

∫
d3q′

(2π )3
G�q ′+G∗

�q ′−
�L.

(19)

We follow this strategy again and by expanding the product
G�q ′+G∗

�q ′−
under the second integral up to first order in �q ′ we

obtain the expression

L
jρ ( �Q,�) = 1

γ̃0
�L

∫
d3q

(2π )3
(�q · Q̂)G�q+G∗

�q− . (20)

By employing the same expansion for the remaining product
of the Green’s function we eventually find

L
jρ ( �Q,�) = �L

γ̃0

∫
d3q

(2π )3
(�q · Q̂)

1

2

�G2
�q(�q · Q̂)Q

γ̃0�G0
, (21)

where the abbreviation �G ≡ G − G∗ has been introduced.
In the next step of determining the expansion coefficients

A(�q ) and B(�q ) [Eq. (16)], we go back to the field-field cor-
relation function �q �q ′ . In the uncritical ladder approximation
the two-particle Green’s function is given by∫

d3q′

(2π )3
�q �q ′ = [G�q+G∗

�q− ]�L

∫
d3q′

(2π )3
G�q ′+G∗

�q ′−
. (22)
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Employing the momentum expansion again, Eq. (22) can be
simplified to yield

�q = �G�q
γ̃ 2

0 �G0
�L + 1

2

�G2
�q(�q · Q̂)Q

γ̃ 2
0 �G0

�L. (23)

By using the above given momentum expansion, Eq. (23),
in combination with the expressions given in Eqs. (21) and
Eq. (17) in connection with the described projection, or
expansion into moments Eq. (16), the following relation is
eventually derived:

�G�q
γ̃ 2

0 �G0
�L + 1

2

�G2
�q(�q · Q̂)Q

γ̃ 2
0 �G0

�L

= A(�q )∫ d3q′
(2π )3 A(�q ′)

1

γ̃ 2
0

�L

+ B(�q )(�q · Q̂)∫ d3q′
(2π )3 B(�q ′)(�q ′ · Q̂)2

�L

γ̃0

×
∫

d3q

(2π )3
(�q · Q̂)

1

2

�G2
�q(�q · Q̂)Q

γ̃0�G0
. (24)

By comparison of coefficients in the relation, Eq. (24), the
demanded coefficients A(�q ) and B(�q ) of the expansion into
moments, Eq. (16) can now be determined as follows:

A(�q ) = �G�q, B(�q ) = �G2
�q. (25)

Employing those expressions for the expansion coefficients,
we can eventually express the two-particle correlator �q �q ′ as

∫
d3q′

(2π )3
�q �q ′ = �G�q(

ω
cp

)2 ∫ d3q′
(2π )3 �G�q ′

Pω
E ( �Q,�)

+
�G2

�q(�q · Q̂)(
ωvE
cp

) ∫ d3q′
(2π )3 �G2

�q ′ (�q ′ · Q̂)2
Jω

E ( �Q,�).

(26)

The expression, Eq. (26), represents the complete expansion
of the intensity correlator into its moments. This form is
used now to decouple and therefore solve the Bethe-Salpeter
equation.

D. General solution of the Bethe-Salpeter equation

We repeat the most important steps so far. The disorder-
averaged intensity correlation, the two-particle Green’s func-
tion, obeys the Bethe-Salpeter equation [see Eq. (7)]

�q �q ′ = Gω+
q+ G∗ω−

q−

[
1 +

∫
d3q′′

(2π )3
γqq′′�q ′′ �q ′

]
. (27)

The Bethe-Salpeter equation may be rewritten into the kinetic
equation or Boltzmann given in Eq. (8),

[(ω�)2 Reε − Q(�q · Q̂) + �� − ω2�ε]�q

= �G�q +
∫

d3q′

(2π )3
�G�qγ�q �q ′�q ′ . (28)

To find the solution of Eq. (28), we first sum in Eq. (28) over
momenta �q, we incorporate the generalized Ward identity as

given in Eq. (9), and we expand the obtained result for small
internal momenta Q and internal frequencies �. It is essential
to employ the form of the two-particle correlator shown in
Eq. (26). Eventually the generalized continuity equation for
the energy density can be derived as

�Pω
E + QJω

E = 4π iωN (ω)

g(1)
ω [1 + �(ω)]c2

p

+ i
[
g(0)

ω + �(ω)
]

g(1)
ω [1 + �(ω)]

Pω
E . (29)

The generalized continuity equation represents energy conser-
vation in the presence of optical gain and/or absorption.

As the standard solution procedure the next step is to obtain
a linearly independent equation which relates the energy
density Pω

E and the current density Jω
E . This is realized in a

way similar to above: One first multiplies the kinetic equation,
Eq. (28), by the projector [�q · Q̂] and then follows the already
outlined steps to eventually obtain the wanted second relation.
This is the current relaxation equation[

ω�
Reεb

c2
+ i

c2τ 2
+ iM(�)

]
Jω

E + Ã QPω
E = 0, (30)

relating the energy density Pω
E and the energy density current

Jω
E . The memory function M(�) is introduced according to

M(�) =
i
∫ d3q

(2π )3

∫ d3q′
(2π )3 [�q · Q̂]�Gω

�q γ ω
�q �q ′

(
�Gω

�q ′
)2

[�q ′ · Q̂]∫ d3q
(2π )3 [�q · Q̂]2

(
�Gω

�q
)2 ,

(31)

where γ ω
�p �p′ ≡ γ ω

�p �p ′ ( �Q,�) is the total irreducible two-particle
vertex, which will be discussed in detail in what follows.

So far, two independent equations, Eq. (29) and Eq. (30),
have been obtained. Either of them relates the current density
Jω

E with the energy density Pω
E . Now one can eliminate one of

the two variables in this linear system of equations. The two
equations are combined to find an expression for the energy
density

Pω
E (Q,�) = 4π iN (ω)

/
(g(1)

ω [1 + �(ω)]c2
p)

� + iQ2D + iξ−2
a D

(32)

that exhibits the expected diffusion pole structure for non-
conserving media. Precisely, in the denominator of Eq. (32)
there appears an additional term as compared to the case of
conserving media. This is the term ξ−2

a D, the mass term,
accounting for loss (or gain) to the intensity not being due
to diffusive relaxation. In Eq. (32) also the generalized �-
dependent diffusion coefficient D(�) has been introduced by
the relation

D(�)[1 − i�ωτ 2Reεb] = Dtot
0 − c2τ 2D(�)M(ω). (33)

It should be noted that Eq. (32) introduces the absorption- or
gain-induced growth or absorption scale ξa of the diffusive
modes,

ξ−2
a = rεAε − 2ω2Imεb

2 Reεb − AεBε/ω

1

ωD(�)
, (34)

which is to be well distinguished from the single-particle or
amplitude absorption or amplification length. The diffusion
constant without memory effects in Eq. (33), Dtot

0 = D0 +

013324-5



ANDREAS LUBATSCH AND REGINE FRANK PHYSICAL REVIEW RESEARCH 2, 013324 (2020)

FIG. 2. Shown on top is a diagrammatic expansion of the ir-
reducible two-particle vertex γ . The bottom panel displays the
disentangled Cooperon with changed momentum arguments.

Db + Dscat, consists of the bare diffusion constant [105]

D0 = 2vE cp

πN (ω)

∫
d3q

(2π )3
[�q · Q̂]2

(
ImGω

�q
)2

(35)

and renormalizations from absorption or gain in the back-
ground medium Db and in the scatterers Dscat,

Db = (ωτ )2ImεbD̃0/4, Dscat = rεAετ
2D̃0/8, (36)

where D̃0 is the same as in Eq. (35), with �G(Q,�) =
(Gω

�q )A − (Gω
�q )R replaced by �G(Q,�) = (Gω

�q )A + (Gω
�q )R

[54,55,111], and (ImGω
�q )2 replaced by (ReGω

�q )2, respectively.
In Eqs. (34)–(36) the following shorthand notation has been

introduced:

uε = Im(�ε�ω )

Im
(
�εGω

0

) , rε = Im�ε/Re�ε,

Aε = 2[uεReG0 + Re�0]

Bε = (Re�ε)2 + (Im�ε)2

2ω2(Re�ε)2
.

E. Vertex function and self-consistency

According to Eqs. (31) and (33), the energy density, the
two-particle function given in Eq. (32), still depends on the
full two-particle vertex γ ω

�q ′ �q. Before discussing the vertex
function, we briefly recall our arguments with regard to
dissipation. Dissipation breaks the time-reversal symmetry
[106,107], but the dissipation rate itself is invariant under
time reversal. As a general picture of this physics the
damped harmonic oscillator can be mentioned, where the
time-reversed solution is still damped with the very same
damping constant. Having this in mind, we analyze the
irreducible vertex γ ω

�q ′ �q for the self-consistent calculation of
M(�), exploiting time-reversal symmetry of propagation
in the active medium. In the long-time limit (� → 0)
the dominant contributions to γ ω

�q ′ �q are maximally crossed
diagrams (Cooperon), which are valid as well for conserving
media, and they may also be disentangled.

Figure 2 shows the disentangling of the Cooperon into
the ladder diagram. The internal momentum argument of the
disentangled irreducible vertex function in the bottom panel
of Fig. 2 is replaced by the new momentum �Q = �k + �k′. Thus
γ ω

�q ′ �q acquires now the absorption- or gain-induced decay or

growth rate ξ−2
a D. Finally, the memory kernel M(�) reads

M(�) = − (2vE cp)2uε[2πωuεN (ω) + rεAε − 2ω2 Im εb]

πωN (ω)D0D(�)

∫
d3q

(2π )3

∫
d3q′

(2π )3

[�q · Q̂] | Im Gq|(Im Gq′ )2[�q ′ · Q̂]
−i�
D(�) + (�q + �q ′)2 + ξ−2

a

. (37)

Equations (33)–(37) constitute the self-consistency equations
for the diffusion coefficient D(�) including the growth/decay
length scale ξa in the presence of dissipation or gain.

F. Length scales and time scales

Within disordered systems a multitude of length scales
and time scales are defined that are related to the single or
two-particle quantities, respectively. An important length
scale which can be directly measured in the experiment is
the scattering mean free path ls defined in the single-particle
Green’s function

G�q(ω) = 1
ω2

c2 ε0 − q2 − �(ω)
, (38)

where the imaginary part of the self-energy introduces the
decay length ls,

q = ω

c

√
ε0 → Re(q) + i

2ls
, (39)

ls = 1

2 Im[
√

q2 + i Im�(ω)]
. (40)

The decay length may equivalently be interpreted as
the life time of the corresponding k mode. In the case
where the dielectric constant is purely real, so in the case
of passive matter, the scattering mean free path ls describes
the scale for determining the loss solely to scattering out of
a given k mode. In the other case, for gain and dissipation,
the k mode experiences amplification or absorption. In the
case of gain this transport theory is valid for Im�(ω) < 0
while the flip of Im�(ω), Im�(ω) = 0, defines the point of
the phase transition, i.e., the laser threshold, for the pumped
single scatterer [54,55,108–111].

We discuss in what follows the transport of the intensity
and the scales related to it. The two-particle Green’s function
as given in Eq. (32) contains two obvious scales originating
solely from finite values of the gain/absorption coefficient.
These length scales may be defined by

�a = 2π

Re
(√

1
/
ξ 2

a

) , (41)

�osc = 2π

Im
(√

1
/
ξ 2

a

) , (42)
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where �a represents the amplification or absorption length of
the intensity and �osc marks the length over which the intensity
oscillates, where ξ 2

a has already been defined in Eq. (34). The
corresponding timescales may then be defined as

1

τa
= D

ξ 2
a

, (43)

1

τosc
= Q2ImD. (44)

Including the gain-induced growth rate τa as defined in
Eq. (43), the intensity Green’s function (32) may now be
rewritten as

P(Q,�) = α

−i� + iQ2ImD + Q2ReD − 1/τa
, (45)

where the coefficient α may symbolically contain all the
factors explicitly shown and discussed in Eq. (32).

Our aim in this article is to calculate the electrical field-
field correlator at different positions and frequencies (7), even-
tually leading to the evaluation of the two-particle Green’s
function given in Eq. (32). The momentum Q appearing in
Eq. (32) represents in Fourier space a relative position within
the sample. In three dimensions the momentum Q actually
defines a volume unit within the sample. This volume should
carefully be distinguished from all other length scales, e.g.,
the sample volume. It is merely the scale which determines
the presence of correlation effects in photonic transport.

In analogy to the flip of the resonance, Im� = 0, in the
single-particle Green’s function the equivalent threshold con-
dition for the energy density is found as follows:

Q2ReD − 1/τa � 0, (46)

⇔ 4π2

R2
crit

ReD − 1/τa = 0. (47)

It leads to the critical length scale

Rcrit = 2π
√

τaReD. (48)

This length describes the volume where photonic transport,
i.e., the energy density or intensity, may compensate for
diffusive losses by amplification due to the presence of some
finite optical gain.

G. Weighted essentially nonoscillatory solver

For the time- and space-dependent solution of the diffusion
equation, Eq. (45), including a coherent laser pulse (see
Fig. 1), we use a weighted essentially nonoscillatory (WENO)
method in time in combination with a fourth-order Runge-
Kutta method in space. Like the discontinuous Galerkin
method [62] for hydrodynamic systems, the WENO method
[56] has been specifically developed for discontinuous and
rogue processes, shocks, and steep gradients. Such processes
are well known to cause numerical problems or oscillations
in the calculation of the first derivative. An efficient method
is thus needed to refine the discretization of the problem
locally in space and time. The WENO method is as such
an upgrade of the essentially nonoscillatory (ENO) method
[57,58] which has been developed for the calculation of
hyperbolic conservation laws. The ENO method replaces the

calculation of higher-order difference quotients by the calcu-
lation of a bunch of lower-order difference quotients which
are of equal order. Whereas the ENO method incorporates
only the difference quotient with the smallest approximation
and thus always the influence of a part of the supporting
points of a number of cells of the so-called stencil is neglected
in the search for the stencil with the smoothest result for
the interpolation, the WENO method is more sophisticated.
It uses a convex combination of all candidates of lower-
order difference quotients of the stencil with an attributive
weight gi [59],

gi = 1

h + D2
i

, (49)

where Di are the smoothness indicators of the stencil. The
variable h > 0 is defined as the machine accuracy which
prohibits a division by 0. All weights are normalized to unity,

g̃i = gi∑
j g j

. (50)

If the stencil contains a discontinuity, the smoothness indi-
cator should be essentially 0. The convergence of the stable
solution is guaranteed by the Lax equivalence theorem [61].

III. RESULTS AND DISCUSSION

A. Scattering mean free path ls and diffusion constant D
for mono- and polydisperse passive and active scatterers

First we discuss here as results the scattering mean free
path ls [see Eq. (40)] and the diffusion constant D [see
Eq. (33)] as the self-consistent material characteristics of the
disordered sample of complex Mie scatterers [112–114]. As
the materials’ initial parameters we refer in what follows to
the literature value of the passive refractive index for titania
TiO2, n = 2.7. The scatterers’ background is air, εb = 1.

In Fig. 3 we show the scattering mean free path ls for a
Gaussian distribution of Mie scatterers (see Fig. 1), which
is centered at the radius of rscat = 122.5 nm; the full width
at half maximum is 17.0 nm and we compare it to results
for monodisperse Mie scatterers of size rscat = 122.5 nm. The
description takes advantage of the fact that scattering matrices
of independent scatterers are additive in general. We find that
the principal Mie characteristics of the central particle size
rscat = 122.5 nm is qualitatively conserved but quantitatively
reduced. This is intuitively clear due to the additivity of
scattering matrices in the independent scatterers’ approach
since no additional structural effects, e.g., in the sense of a
varying concentration of surface defects or the occurrence of
correlated clusters and glass transitions, have been consid-
ered so far to induce any additional dependences. The exact
Mie resonance positions, the minima of ls, remain spectrally
fixed for the Gaussian distribution of polydisperse scatterers
ensembles compared to the monodisperse ensembles. What
can be definitely deduced is that the scattering mean free path
ls overall is prolonged for the Gaussian distribution, which
means that the scattering strength of the disordered sample is
effectively reduced for polydisperse media. For wavelengths
λ = 490.0, 540.0, and 700.0 nm a reduction of a factor of 2
and more in the magnitude of the scattering mean free path
ls is derived. The filling fraction for the result of Fig. 3 is
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FIG. 3. Scattering mean free path ls = 1

2 Im[
√

q2+i Im�(ω)]
for two

disordered samples of TiO2 Mie spheres. The passive refractive index
is n = 2.7 and the scatterers’ background is air, εb = 1. The blue
dashed line shows the result for ls for a Gaussian distribution of
scatterer sizes centered in the diameter 2rscat = 245.0 nm. The full
width at half maximum is 17.0 nm (see Fig. 1). The filling fraction is
48.83%. The black line shows the result for ls for monodisperse Mie
scatterers with a diameter of 2rscat = 245.0 nm. The other parameters
are the same. We find that the scattering mean free path ls for the
Gaussian distribution of scatterers is overall increased compared to
the monodisperse scatterers and the quality of the results persists;
however, the very pronounced Mie resonances, the sharp dips of ls,
for λ = 310.0 nm and λ = 380.0 nm are reduced.

kept constant at 48.83%. The scattering strength and thus also
the probability to reach the regime of strong localization of
light are significantly reduced for narrow peaked polydisperse
scatterers distributions compared to monodisperse ensembles.

In Fig. 4 we show the results for the scattering mean
free path ls for the Gaussian distribution of scatterers of
the filling fractions 48.83% and 55.10% for passive Mie
resonators and for absorbing scatterers, respectively. For the
absorption we consider the literature value for TiO2 bulk of
Im(n) = 0.005 932 as well as experimentally relevant absorp-
tion values for disordered granular arrangements. We find
that the material characteristics of the scattering mean free
path ls for an increase of the filling fraction from 48.83%
to 55.10% are quantitatively reduced, which is qualitatively
confirmed. No crossover between both results is found all
over the spectrum. For moderate absorption of a literature
value for bulk titania Im(n) = 0.005 932, the magnitude of
ls generally persists; however, it is already visible for λ =
260.0–270.0, 305.0–320.0, 370.0–385.0, and 485.0–495.0 nm
that the Mie resonances are washed out and ls is increasing.
The peak positions of the characteristics at λ = 345.0–360.0
and 430.0–445.0 nm show a decrease of ls for moderate
absorption. By increasing the absorption up to the value of
Im(n) = 0.3, which corresponds to τa = 0.9 ns, we find that
the Mie resonances are further reduced. For a filling fraction
of 55.10% there is a crossover of all results of ls found. It can
be deduced that for one specific distribution of Mie scatterer
sizes and varying loss parameters, and identical parameters
otherwise, spectral points or at least narrow spectral regions
exist where the loss is barely detectable by the coherent
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FIG. 4. Scattering mean free path ls for disordered samples of
TiO2 Mie spheres. Here n = 2.7, with a Gaussian distribution of
scatterers peaked at 2rscat = 245.0 nm and a full width at half max-
imum of 17.0 nm (see Fig. 1). The scatterers’ background is air,
εb = 1. We display results for the filling fractions of 48.83% and
55.10% of passive scatterers and we show for the filling fraction
of 55.10% results for active scatterers. The green line is the result
for the literature value of absorption, Im(n) = 0.005 932 for bulk,
and the red line is a result for τa = 0.9 ns, which is equivalent to
Im(n) = 0.3. We find with an increasing filling fraction an overall
decrease of ls while its qualitative behavior is conserved. We find that
with the increase of τa, thus the increase of loss, the Mie resonances
wash out. However, it is already visible that all results for one specific
filling fraction cross in what can be mathematically identified as the
inflection points. This behavior is confirmed by the behavior of the
diffusion coefficient D (see Fig. 5).

backscattering or the coherent forward-scattering experiment.
This loss-insensitive point is located approximately at the
turning points of the results for ls. At the dips and the peaks
of ls loss and gain are most efficiently detected. Speaking in
terms of the scattering strength of the disordered sample, it
is interesting that, while absorption reduces the resonators
influence in general and thus leads to the reduction of the
scattering strength in the Mie resonance position, it leads
to a remarkable increase of the scattering strength of the
ensemble in all off-resonant cases, e.g., for λ = 270.0–300.0,
320.0–367.0, 390.0–470.0, and 515.0–580.0 nm. This effect
is pronounced for monodisperse samples.

The diffusion coefficient D, as it is formally derived in
Eq. (33), can in principle be a complex quantity where
the imaginary part ImD becomes of physical relevance for
pumped active complex matter near or at the laser thresh-
old. In coherent backscattering experiments and in coherent
forward-scattering experiments the real part of the diffusion
coefficient ReD plays a crucial role (Fig. 5). In the literature
ReD is commonly addressed as the diffusion constant D and
it can be implicitly measured. For an absorbing polydisperse
sample, τa = 0.9 ns and Im(n) = 0.3, we find that almost
any Mie characteristics are washed out due to the absorptive
character of the single scatterer. A destructive interplay be-
tween absorption characteristics and the resonator properties
is developed all over the electromagnetic excitation spectrum.
Extremely pronounced is the difference in the magnitude
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FIG. 5. Real part of the diffusion coefficient ReD [see Eq. (33)]
for samples of disordered TiO2 samples. The parameters are the
same as in Fig. 4. We find that the increase of the filling fraction
rather moderately effects the quantitative behavior of ReD in the
spectral region below λ < 490.0 nm, so λ < 4rscat; for λ > 490.0 nm
we find that the influence of the filling increases. We find that
the effect of the bulk value for absorption of Im(n) = 0.005 932
on the diffusion coefficient for moderate excitation is peaked at
λ = 350.0 nm (green line), while it is almost undetectable in other
spectral positions. The increase of absorption to τa = 0.9 ns results
in the same crossing point as found for ls at the inflection points.
Its physical meaning is rather important. Absorption or gain will
rather hardly be measured at the inflection points. The inset shows the
crossing at λ = 583.0 nm, which has been confirmed experimentally
in [75,77]. It is found that a value of absorption, as it is commonly
detected in experiments with TiO2 powders [75,77], can eliminate
almost completely the size-dependent influences of the scatterers’
geometry in the diffusion characteristics of random ensembles.

of the diffusion coefficient D for wavelengths larger than
λ = 700.0 nm. When the filling is enhanced from 48.83%
to 55.10% the diffusion coefficient D at λ = 800.0 nm is
reduced from 85 m2/s to 25 m2/s, so approximately to 30%.
It should be pointed out here that there is no transition to
an ordered sample considered and all results are derived
for homogeneous disordered but polydisperse samples of the
mentioned Gaussian distribution of scatterer radii. We display
one of the crossover points in the inset of Fig. 5, the diffusion
coefficient D, which is in the vicinity of the wavelength
λ = 583.0 nm.

When we discuss these results for ls and D, in terms of
the Ioffe-Regel criterion with the benchmark of strong local-
ization of light, we find that kl < 1 could be experimentally
derived for the monodisperse case (see Fig. 3), e.g., in the
Mie resonance at λ = 490.0 nm, whereas for the polydisperse
ensemble kl = 1.67 the condition is not strictly fulfilled and
interference effects will play a subtle role. It can thus be con-
cluded that the probability to find Anderson localized photons
will be enhanced in the monodisperse ensemble where a factor
of 2 enhancement with respect to the incoming intensity could
be detected. The increase of the volume filling fraction for
polydisperse samples will only have a moderate impact in the
search for Anderson localized photons, whereas absorption,
which is enhanced in disordered granular media as compared
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FIG. 6. Temporal evolution of σ 2(t )/L2, the cross section of the
transmitted photon density 1/e. The samples extent is L = 0.94 mm,
n = 2.7, and the sample filling is 55.10%. The Gaussian distribution
of scatterers is centered at the diameter of 2rscat = 245.0 nm and the
full width at half maximum is 17.0 nm. The scatterers’ background
is air, εb = 1. The analyzing pulse is characterized by its center,
which is λ = 590.0 nm, the full width at half maximum is 250.0 fs,
the beam waist on the glass surface at focus is 100.0 μm, and the
pulse transition time is τmax = 2.42 ns (see Fig. 1). The result is nor-
malized to the peak transition time. We display the passive complex
system (black); the same arrangement including the literature value
for absorption of TiO2 bulk, Im(n) = 0.005 932 (green); an exper-
imentally relevant value for absorption of disordered random TiO2

media, Im(n) = +0.3 (red); and the same scatterer arrangement with
refractive index n = 2.7 as it is pumped and gain assumes a value of
Im(n) = −0.3 (yellow). For all parameters a plateau in the temporal
evolution of σ 2(t )/L2 is found as a characteristic of the complex
medium in the long-time limit. Whereas for gain the spreading of the
cross section overall is increased, absorption generally seems to lead
to an earlier inset of the plateau effect. Results for the passive system
(black), Im(n) = 0.005 932 (green), and Im(n) = +0.3 (red) are to
be compared to results of the scattering mean free path ls (Fig. 3) and
to the diffusion coefficient D (Fig. 5) at λ = 590.0 nm.

to the bulk case, is a crucial and limiting factor (see Fig. 4).
Thus it is important to find a systematic theoretical method
to distinguish micro- and macroscopic structural effects in the
signal which is a mix of both.

B. Temporal evolution of the transmission cross section
and the transmitted intensity

In Sec. II we presented the theory to study the propagation
and the localization of a laser pulse through a disordered
ensemble of complex scatterers. The solution of this frame-
work in the sense of the simulation of detectable scattered
intensity is not restricted to a dimension or a direction. Trans-
mission optical coherence tomography–based measurements
of optical material properties is one experimental platform
for our methodology [115–117]. Here we present results for
the temporal evolution of the transmission cross section σ

and the mean-square width σ 2 (Fig. 6) and the temporal
dependence of the transmitted photonic intensity (Fig. 7).
Our results are derived for homogeneous disordered samples
with a Gaussian distribution of scatterer diameters centered at
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FIG. 7. Temporal evolution of intensity transmission I/Iincoming.
I is the time-dependent surface- and angle-integrated count rate at the
detector. Iincoming is the time-, surface- and angle-integrated count rate
at the detector. The green line marks the behavior of purely diffusive
transport; the deviation to coherent transport (see the black line and
circles) in the logarithmic plot is significant. The result is normalized
to the peak transition time τmax = 2.42 ns. The bottom panel shows
the logarithmic plot of the result. The green dashed line marks the
diffusive limit. We display results for the passive case (black) and
the same arrangement including the literature value for absorption
of TiO2 bulk, Im(n) = 0.005 932 (blue). One finds that absorp-
tion is pulling the result in the long-time limit towards the purely
diffusive case. Gain, on the other hand, i.e., Im(n) = −0.005 932,
Im(n) = −0.005 932 (red), Im(n) = −0.011 864 (green), Im(n) =
−0.029 660 (orange), and Im(n) = −0.3 (maroon), yields a lift of
the result in the long-time limit.

d = 245.0 nm and 55.10% volume filling. This is the strongly
scattering and strongly disordered regime. We display results
for the excitation laser frequency of λ = 590.0 nm, where we
know kls = 3.62 from previous results (see Fig. 4). In terms
of the Ioffe-Regel criterion, this case should be far off any
case of the Anderson localization regime; thus the aim of
our considerations is to determine the amount of coherently
interfering photons as the deviation from the purely diffusive
case. The mean-square width [75,77,91]

σ 2(t ) =
∫

r2PE (r, t )d2r∫
PE (r, t )d2r

(51)

is defined as the square of the up to the full width at half
maximum (FWHM) limit integrated area σ of the transmitted
transverse intensity distribution at the ensemble surface (see
Fig. 1). We display this characteristic in Fig. 6 normalized to
the square of the sample length L2.

We find that the transmission cross section, the mean-
square width (Fig. 6), definitely depends on the absorption
and gain of the complex random medium and it is a very
sensitive measure. In Fig. 6 we display results for the temporal
evolution of σ 2/L2 for the wavelength of the incident pulse of
λ = 590.0 nm. The case of λ = 590.0 nm is extremely close
to the crossing point or turning point of the scattering mean
free path ls (Fig. 4) and the corresponding diffusion coefficient

D (Fig. 5). While the characteristics ls and D are almost
insensitive to absorption at λ = 590.0 nm, a clear deviation
of σ 2/L2 for the case of Im(n) = +0.3 from the passive case
of about 12% is found in the temporal limit of t/τmax = 4.
In Fig. 7 we show the results for the transmitted intensity
I/Iincident in the long-time limit. The purely diffusive case is
marked in the logarithmic plot by the green dashed line. It can
be concluded for the strictly passive case (black line) that the
increase of the transmission in the long-time limit in compar-
ison to the diffusive case with the exponential decay is the
number of localized photons that have been multiply and co-
herently scattering and interfering in the disordered medium
in the sense of the maximally crossed processes, represented
diagrammatically by the Cooperon (see Fig. 1). It is further
derived that absorption, incorporated by the literature value
for bulk TiO2, Im(n) = +0.005 932 (blue line), reduces the
number of localized photons, and the long-time behavior of PE

retrogrades towards the diffusive limit. This result as such has
been expected. By comparison of the relative magnitude of the
results for σ 2/L2 with the transmitted intensity PE (Fig. 7), it
is however interesting to note that the plateau effect for the
case of absorption is enhanced; precisely it shows an earlier
onset. Thus the plateau as such seems not to be a signature
of localization; however, the magnitude of the deviation of
the transmitted intensity PE from the diffusive limit can be
interpreted as a sign of enhanced coherent multiple scattering
and thus as an enhancement of interference effects in princi-
ple. The influence of the single Mie scatterer is noteworthy
when we discuss the influence of gain. Gain as the negative
imaginary part of the complex refractive index and as a nega-
tive part of the complex permittivity is a microscopic material
characteristic equivalent to absorption. Whereas absorption
however is a microscopic interaction where the life-times of
light-matter bound states in first instance do not play a crucial
role, this is different for the case of gain. Gain is achieved by
an enhanced life time of light-matter bound states leading to
an increase of the photon number in the incident wavelength.
Gain and absorption are as such in our theory properties of the
single complex Mie scatterer, and the microscopic material
characteristics is interacting with the resonator. In the case
of strong external laser pulses the local density of states
and thus the refractive index of TiO2 bulk can be shifted
and this effect will lead to a shift of the overall character-
istics of the disordered granular medium ls (Fig. 4) and D
(Fig. 5). When nonlinear effects, e.g., higher-order harmonics
of the incident wavelength ω, play a role, this process might
contribute to an enhancement of multiple scattering and of
interference effects. These enhancements can result in time-
of-flight experiments in a variety of observations, such as an
off-center peak in the integrated spectrum. In this article we
discuss gain in the central wavelength of the incident pulse,
which can originate from light-matter bound states of higher
harmonics, so nonlinear effects play a role even though the
system is far below any laser threshold. On the one hand,
the gain is visible as a delayed onset of the plateauing of
σ 2/L2 (see Fig. 6, yellow line); on the other hand we find
an increase in the transmitted coherent photon intensity in the
long-time limit (Fig. 7). The variation of PE due to enhanced
multiple scattering and interference effects due to an increased
filling due to enhanced resonator properties of the geometrical
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scatterer can thus be determined and distinguished by com-
paring the characteristics of lS , D, σ 2/L2, and PE from effects
incorporating gain and absorption.

IV. CONCLUSION

We have presented in this article an innovative method
for characterizing disordered complex random media based
on a quantum-field theoretical approach, the Vollhardt-Wölfle
theory, for photonic transport including interference effects
in multiple scattering processes. Our theory incorporates the
Ward-Takahashi identity for photonic transport and thus en-
ables us to determine self-consistent results for the mate-
rial characteristics of disordered granular complex media.
We solve the theory in three dimensions, space- and time-
dependent, with a weighted essentially nonoscillatory solver
method (WENO). The solution with the WENO solver en-
ables us to determine results for ultrashort analyzing pulses
and pump-probe experiments, since we can deal with highly
nonlinear processes and discontinuities. We have presented
here a systematic study of the scattering mean free path ls
and the diffusion coefficient D. These characteristics can be
compared directly to experimental results derived in a coher-
ent backscattering experiment. They show that the resonator
characteristics, e.g., the Mie resonance, plays a crucial role
which is even more important when nonlinear effects, gain
and absorption, are minimized by the choice of the scatter-
ing matter. It has also been shown that a polydispersity of
the scatterers reduces the probability to reach an Anderson
transition with transport of light. The incorporation of gain
and absorption reveals that all material characteristics are very
sensitive to such properties of complex matter. It has been
shown that so-called absorption-free measurements are bound
to spectrally narrow areas where the resonator characteristics
of the single scatterer lead to a minimized sensitivity with
respect to a change of the complex refractive index and the
complex permittivity. Our results for ab initio simulations
of time-of-flight experiments (ToF) yield the characteristics
of the normalized transmission or reflection cross section
and the absolute as well as the normalized number of co-

herently scattered photons. We presented results of random
mono- and polydisperse ensembles of TiO2 Mie scatterers
in a transmission optical coherence tomography setup. It has
been demonstrated that these characteristics offer an increased
sensitivity to any microscopic or macroscopic structural mod-
ification compared to the coherent backscattering experiment.
The underlying theory paves the way towards the detection
of subtle interference effects due to multiple scattering events
in OCT setups that may lead to an increase of the sensitivity
of OCT of orders of magnitude, and furthermore it may im-
prove the analysis of other methods of advanced spectroscopy
like DWS, DLS, and QFS. This effect can be enhanced by
the scatterer resonances. We conclude that our combinatory
analysis of underlying transport theory and its results, the
scattering mean free path and the diffusion constant, and the
derived characteristics in the temporal evolution is suitable to
distinguish between perfectly coherent multiple scattering and
interferences and between influences of the complex random
medium in the full spectrum of the analysis. We provide a
consistent method which is able to characterize disordered
media in the weakly and the strongly scattering regime; the
approach is suitable to incorporate ultrashort and intense light
pulses and the resulting subtle local and nonlocal light-matter
interactions on a broad temporal range. The method is ab initio
not limited to light; it can be performed with the full spectrum
of electromagnetic excitations and it can be transferred to any
other type of wave propagation as matter waves and sound.
It will be subject of subsequent work to investigate further
influences of multiple scattering and higher-order nonlinear
effects in ensembles of clusters and composite scatterers such
as shells, as well as of macromolecules that can be random or
quasi-ordered and may form so called meta glasses.
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