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Abstract
We develop an analytical theory for diffusive random lasers by coupling the transport theory of
the disordered medium to the semi-classical laser rate equations, accounting for (coherent)
stimulated and (incoherent) spontaneous emission. From the causality of wave propagation in
an amplifying, diffusive medium we derive a novel length scale which we identify with the
average mode radius of the lasing quasi-modes. We show further that loss at the surface of the
laser-active medium is crucial for stabilizing a stationary lasing state. The solution for the
transport theory of random lasers for a layer geometry with appropriate surface boundary
conditions yields the spatial profile of the light intensity and of the population inversion. The
dependence of the intensity correlation length on the pump rate is in qualitative agreement with
experimental and numerical findings.

Keywords: wave propagation in random media, random lasers, disordered media, light
localization

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A random laser is a system formed by randomly distributed
scatterers embedded in a host medium where the scatterer
or the host medium or both provide optical gain through
stimulated emission [1]. Recent observations of random
lasing in a wide variety of systems, like powders of
semiconductor nanoparticles [2–5], organic dyes in strongly
scattering media [6–8], organic films or nanofibers [9–11] and
ceramics [12], have triggered a rapidly growing interest. For
reviews with comprehensive lists of references see [13, 14].
Random lasers share some properties with conventional lasers,
like threshold behavior [4], narrow spectral lines [15], and
photon statistics [16, 17], but also exhibit distinctly different
properties like multidirectional emission. Coherent feedback
has unambiguously been demonstrated to be present in strongly
disordered random lasers [16]. It requires the light to be
sufficiently confined in the random system. While spatially
confined regions from which the laser emission takes place
have been observed experimentally [15, 13], the physical
origin of coherent feedback and of localized quasi-modes,
and the dependence of their size on the pump rate, have
remained controversial. The possible theoretical explanations

range from preformed random microresonators [18] to multiple
random scattering (diffusion) [19], possibly enhanced by
self-interference [15] of waves and the resulting onset of
Anderson localization (AL) [20]. Conversely, it is an
interesting fundamental question how AL of light, which
has been understood [21, 22] as a consequence of self-
interference, is influenced by the coherent, stimulated
amplification in the lasing state. The problem of the intensity
distribution in a diffusive random laser has been attacked
theoretically using phenomenological diffusion models [23]
and numerical calculations in one [24, 25] and two spatial
dimensions [26–28, 19]. However, the experimentally
observed decrease of the lasing spot size with increasing pump
rate has not been explained so far.

In this paper, we address the question of the size of lasing
spots in diffusive random lasers using an analytical transport
theory. We begin the analysis in section 2 by giving an outline
of the transport theory of light in a disordered medium with
linear gain (i.e., constant-in-time amplification rate), including
self-interference (so-called cooperon) contributions. By a
phenomenological analysis we show that causality implies in
the presence of linear gain a novel length scale which is to
be identified with the average radius (spot size) of a lasing
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mode, Rs. In section 3 we extend the theory for a system
with linear gain to a transport theory including non-linear
gain due to stationary lasing above threshold. Observing that
a stationary lasing state is possible only if the amplification
in the medium is compensated by loss at the surface of the
system, we consider a model for a finite-size random laser with
infinite extent in the (x, y) plane, but finite, constant thickness
in the z direction, a geometry relevant for many experimental
systems [3, 4, 15, 16]. Coupling the diffusive transport theory
to the rate equations of a four-level laser in the stationary state
we derive an analytical expression for the intensity correlation
length ξ , to be identified with the average lasing spot size, Rs.
Due to the surface boundary conditions the spatial extent of a
lasing spot in the (x, y) plane obtains a z-dependent profile,
ξ(L). We also analyze its dependence on the pump rate. The
conclusions are drawn in section 4, on the pump rate and on
the depth of the mode along the z direction.

2. Transport theory for a diffusive, linear gain
medium and causality

The propagation of light is described by its wave equation.
Neglecting the polarization degree of freedom we consider in
the following the scalar wave equation for the field � . It reads

ω2

c2
ε(�r)�ω(�r) + ∇2�ω(�r) = −iω

4π

c2
jω(�r), (1)

where c denotes the vacuum speed of light and jω(�r) an
external current source. The dielectric constant is ε(�r) =
εb + �ε V (�r), where the dielectric contrast between the
background, εb, and the scatterers, εs, has been defined as
�ε = εs − εb. The spatial arrangement of the scatterers is
described through the function V (�r) = ∑

�R S �R (�r − �R), with
S �R (�r) a localized shape function at random locations �R. The
linear gain (absorption) is described by a temporally constant,
negative (positive) imaginary part of εb and/or εs.

In [29–31] we have developed a theory for light transport
in disordered media with linear gain or absorption. It results
in an energy–density correlation function Pω

E (�r − �r ′, t − t ′),
which describes how the energy density of the light field
with frequency ω propagates diffusively between two points
in space and time, (�r , t), (�r ′, t ′). The Fourier transform of the
energy–density correlation function Pω

E (Q,�) is obtained as

Pω
E (Q,�) = NP

� + iQ2 D + iξ−2
a D

(2)

where the expression for the coefficient NP is given explicitly
in [30], but is not relevant for the present purpose. The
denominator of equation (2) exhibits the expected diffusion
pole structure with the diffusion coefficient D. In addition,
in the case of a non-conserving medium, i.e. net absorption
(gain), there appears the (purely imaginary) term iγa = iξ−2

a D,
which has a positive (negative) imaginary part and does not
vanish in the hydrodynamic limit, � → 0, Q → 0. The
self-consistent solution of the transport theory including self-
interference of waves (cooperon contributions; see [30, 31])
shows that in the presence of absorption or gain the diffusion

coefficient D cannot vanish and is in general complex. Hence,
truly Anderson localized modes do not exist in this case.

For the case of absorption (γa > 0) it is seen by
Fourier transforming equation (2) w.r.t. time, Pω

E (Q, t) =
iNP e−(Q2 D+γa)t , that Re γa represents the loss rate of the
photonic energy density due to absorption in the medium.
Fourier transforming equation (2), on the other hand, w.r.t.
space in the stationary limit (� → 0) shows that ξa =
Re

√
(γ /D) is the length scale over which the energy density

of diffusive modes is correlated in the lossy medium.
For the case of linear gain (γa < 0) the wave equation

predicts an unlimited growth of the field amplitude and, hence,
of the energy density. This means that a stationary lasing state
is not possible in this case and, therefore, the limit � → 0
must strictly not be taken in equation (2). Such a behavior of
linear gain is expected only during the exponential intensity
growth shortly after the onset of lasing. A complete theory
of random lasing must, therefore, take into account either the
full temporal dynamics of the system, or in a stationary state
additional surface loss effects must compensate for the gain in
the medium (see section 3). Nevertheless, we can extract a
characteristic size of a stationary lasing spot from this theory
by requiring that the stationary lasing state has been reached
locally, i.e. within a finite subvolume of the system: causality
requires that the pole of Pω

E (Q,�), equation (2), as a function
of � resides in the lower complex � half-plane. For γa < 0 this
is possible only if all the diffusive modes allowed inside a given
lasing spot have a wavenumber Q > Qmin = √

Re(−γa/D).
This, in turn, requires that the spot size is

Rs = 2π

Qmin
= 2π√

Re(−γa/D)
. (3)

This is the characteristic, maximal size of a spatial region
over which diffusive modes can be causally correlated in
the stationary lasing state. We conjecture that, hence, this
size is to be identified with the lasing spot size observed
experimentally [15, 13] in diffusive random lasers. Since
according to the microscopic theory [30] the growth rate (−γa)

is, for small linear gain, proportional to the average gain in the
medium, γa ∝ Im ε(�r), we predict the spot size to be inversely
proportional to the gain.

More generally, despite the fact that the linear gain
assumption is not suited to describe stationary lasing, it can
be used to estimate the laser threshold, i.e. the critical pump
rate for lasing. Amazingly, this is a rather general remark.
For example, in a simpler system of a single microsphere with
gain, it has been shown [32] that the scattering coefficients
calculated within linear response lose their causality just at the
point where the sphere crosses its lasing threshold. Applied
to our random laser system, this means that the threshold
for lasing within a spot of size Rs is reached when the
transport coefficient −γ , determined by the pump rate via the
microscopic transport theory [30, 31], reaches the value given
by equation (3).

In figure 1 we show the numerical evaluation of the spot
size Rs as a function of increasing Im εs for typical parameters,
as given in the figure caption. The imaginary part of the
dielectric constant is a measure of external pumping, since
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Figure 1. The spot size Rs, equation (3), in units of the scatterer
radius r0, as obtained by causality considerations (see the text) as a
function of the imaginary part of the dielectric constant of the
scatterers. The parameter values used are εb = 1, Re εs = 10,
scatterer filling fraction ν = 30%, light frequency ω/ω0 = 2.5. The
light frequency is ω0 = 2πc/r0 where c is the vacuum speed of light.
The data in the inset are taken from [13] and refer to the spot size of
the modes.

the gain is given by the population inversion of the laser.
Therefore, larger pumping yields higher inversion and leads
to a larger Im εs. The calculated spot size displays a qualitative
agreement with the experimental data [13] (spot size versus
pump intensity/threshold intensity) shown in the inset.

3. Transport theory of random lasing

As remarked in section 2, a stationary lasing state in a
homogeneously pumped system is possible only if the system
is finite, so that surface loss effects can compensate the
gain in the medium. To avoid the causality problem, we
consider here a three-dimensional random laser model with
a homogeneously pumped, active medium which extends
infinitely in the (x, y) plane, but has a finite, constant thickness
d in the z direction. The laser-active material is described by
the semi-classical laser rate equations, and the light intensity
transport by a diffusion equation. In particular, the rate
equations for a four-level laser are

∂ N3

∂ t
= N0

τP
− N3

τ32
(4)

∂ N2

∂ t
= N3

τ32
−

(
1

τ21
+ 1

τnr

)

N2 − (N2 − N1)

τ21
nph (5)

∂ N1

∂ t
=

(
1

τ21
+ 1

τnr

)

N2 + (N2 − N1)

τ21
nph − N1

τ10
(6)

∂ N0

∂ t
= N1

τ10
− N0

τP
(7)

Ntot = N0 + N1 + N2 + N3, (8)

where Ni = Ni (�r , t), i = 0, 1, 2, 3, are the population number
densities of the corresponding electron level (i ∈ {1, . . . , 4}),
Ntot is the total number of electrons participating in the lasing
process, γi j ≡ 1/τi j are the rates of transition from level i to
j , and γnr is the non-radiative decay rate of the laser level 2.

γP ≡ 1/τP is the rate of transition due to homogeneous,
constant, external pumping. Furthermore nph ≡ Nph/Ntot is the
photon number density, normalized to Ntot. In the stationary
limit (i.e. ∂t Ni = 0), the above system of equations can be
solved for the population inversion n2 = N2/Ntot to yield (with
γ32 and γ10 assumed to be large compared to all other rates)

n2 = γP

γP + γnr + γ21(nph + 1)
. (9)

The photon number density (light intensity), normalized to
Ntot, nph = Nph/Ntot, obeys the diffusion equation [23],

∂t nph = D0∇2nph + γ21(nph + 1)n2, (10)

where the last term on the rhs describes the intensity increase
due to stimulated and spontaneous emission, as described
by the semi-classical laser rate equations. Since in the
slab geometry ensemble-averaged quantities are translationally
invariant in the (x, y) plane, but not along the z direction,
a Fourier representation in the (x, y) plane in terms of
nph( �Q||, z), n2( �Q||, z) is convenient,

∂t nph = −D0 Q2
||nph + D0∂

2
z nph

+ γ21

∫ d2 Q′
||

(2π)2
nph( �Q|| − �Q′

||, z)n2( �Q′
||, z) + γ21n2. (11)

We now seek the photon density response function P( �Q||, z,
�), which describes the response of the photon density, nph,
to the distribution of the population inversion, n2, in order
to determine the transport coefficients. In the stationary case
(∂t nph = 0) and in the long-wavelength limit along the (x, y)
plane (Q|| → 0), the z derivative in equation (11) can be
expressed without derivatives in terms of nph and n2 only.
Plugging this back into equation (11) yields

[

∂t + D0 Q2
|| +

γ21n2

nph

]

nph( �Q||,z, t) = γ21n2( �Q||,z, t) (12)

and, hence, after Fourier transforming w.r.t. time, the diffusion
form of the density response function,

PE( �Q||, z,�) = iγ21

� + iQ2
||D0 + iξ−2 D0

, (13)

where from equation (12) the correlation length ξ is defined as
the real, positive quantity

ξ =
√

D0

γ21

nph

n2
. (14)

As seen from equation (13) the pole structure of PE in this
finite-size, diffusive system is perfectly causal. The square
of the correlation length ξ remains positive, indicating an
effective loss out of a given Q|| mode. This is due to the
loss of intensity at the surfaces. Additionally, the mass term
becomes less and less significant as the laser intensity in the
sample builds up, because the relative population inversion
clearly obeys n2 � 1 whereas the relative photon number is
not restricted.
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Figure 2. The following quantities are shown as a function of z for
different values of the pump rate γP : (a) the photon number, which
increases monotonically with increasing pump rate and has its
maximum in the film center (z = 0); (b) the population inversion,
which is inversely proportional to nph—see equation (9); (c) the
correlation length (spot size), which clearly behaves
non-monotonically with increasing pumping. For all panels the
diffusion constant is D0 = 1 d2γ21.

Since for homogeneous pumping the averaged photon
density does not depend on x or y, equation (11) simplifies
in the stationary limit to

D0∂
2
z nph = −γ21(nph + 1)n2 (15)

and nph(z) is finally determined via equation (9) by the regular
differential equation

∂2
z nph(z) = −γ21

D0

(γP/γ21)

1 + (γP/γ21)

nph(z)+1

. (16)

Equations (16), (9) and (14) comprise the complete description
of the spatial photon density profile perpendicular to the lasing
film and the intensity correlation length (spot size) parallel to
the film.

Numerical evaluations of equations (16), (14) and (9) are
shown in figures 2 and 3. In figure 2 the photon number
nph(z), population inversion n2(z) and correlation length ξ(z)
are shown as functions of z for different values of external

Figure 3. The figure shows the following quantities as a function of
the pumping rate P at the film surface (z = ±0.5d): (a) the photon
number which is displaying saturation for strong pumping; (b) the
population inversion, also saturating; (c) the correlation length (spot
size) showing non-monotonic behavior. The inset of panel
(c) displays the 1/

√
γP dependence of the intensity correlation

length ξ on the pump rate above threshold (γP > 1; see the
discussion in the text).

pumping, characterized by the pumping rate γP . The value of
the diffusion constant was chosen to be D0 = 1 d2γ21, where d
is the width of the film. In panel (a) of figure 2 the photon
number displays a monotonically increasing behavior with
increasing pumping. The maximum of the intensity resides in
the center of film (z = 0), since this is the position farthest
from the boundaries, and therefore with lowest loss of intensity.
The population inversion, equation (9), behaves inversely to
nph(z); see equation (9). In contrast to this rather expected
behavior, the correlation length ξ(z) as given by equation (14)
exhibits a non-monotonic behavior with increasing pumping.
For pumping rates γP < γ21 the correlation length increases,
but for pumping rates γP > γ21, ξ is decreasing. The equality
between γP and γ21 marks the situation where electrons are
excited into the upper laser level as fast as they relax to
lower levels. Therefore this characterizes the lasing threshold.
Available experimental data [15, 13] also indicate a decreasing
behavior of the spot size above threshold. Measurements of the
intensity correlation length below threshold have not yet been
reported.
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The same quantities are shown in figure 3 as a function of
external pumping γP at the surface of the random laser. Photon
number and population inversion both display saturation
behavior. Panel (c) of figure 3, however, exhibits the non-
monotonic behavior of the correlation length. This plot is to
be directly compared to experimental data [13], as e.g. shown
in the inset of figure 2. There is a good qualitative and even
quantitative agreement between calculated and measured spot
size. The inset of panel (c) shows that the dependence of
the spot size ξ on the pump rate γP above threshold (γP ) is
predicted to be

ξ(γP) = ξ(∞) + α/
√

γP (17)

with a proportionality constant α. This result is open for further
experimental tests.

4. Conclusion

We have discussed how a linear response theory for light
transport, including self-interference effects, in disordered
media with linear gain predicts threshold behavior of the
intensity. Even more interestingly it also predicts a
characteristic, average radius of lasing modes, dictated by
causality. We identify this length scale with the spot size of
the random laser as measured in experiments [15, 13] and find
qualitatively good agreement. Further, we have proposed an
analytical transport theory for random lasing in finite systems.
A finite system size is necessary for surface loss to compensate
the gain in the medium and, hence, to stabilize a stationary
lasing state. In particular, we consider a slab geometry where
in the medium the light intensity propagates diffusively and the
loss through the surfaces is included by appropriate boundary
conditions. The theory allows for the first time for an analytical
calculation of the intensity correlation length of this system,
describing the spatial extent of a mode (spot size). The spot
size is predicted to behave non-monotonically as a function of
external pumping, i.e. increasing below and decreasing above
the laser threshold. A comparison with experiments reveals
qualitatively good agreement. Our prediction of its functional
dependence on the pump rate is open to further experimental
tests.

Our future work will include solving for semi-analytical
light transport theory with self-interference contributions when
the system is self-consistently coupled to the laser rate
equations.
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