
PHYSICAL REVIEW A 84, 013814 (2011)

Scalar wave propagation in random amplifying media: Influence of localization effects on length
and time scales and threshold behavior
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We present a detailed discussion of scalar wave propagation and light intensity transport in three-dimensional
random dielectric media with optical gain. The intrinsic length and time scales of such amplifying systems
are studied and comprehensively discussed as well as the threshold characteristics of single- and two-particle
propagators. Our semianalytical theory is based on a self-consistent Cooperon resummation, representing the
repeated self-interference, and incorporates as well optical gain and absorption, modeled in a semianalytical way
by a finite imaginary part of the dielectric function. Energy conservation in terms of a generalized Ward identity
is taken into account.
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I. INTRODUCTION

Built on a wide story of success and plenty of achieve-
ments in science, light propagation and intensity transport
in multiple-light-scattering random media further provides
a lot of remarkable and fascinating features in theory [1–4]
and experiment [5–7]. Special ongoing interest is focused on
optical gain material regarding disordered as well as periodic
structures [8–12].

In theoretical physics a profound understanding of this sub-
ject requires the discussion of strong or Anderson localization
[13,14] of light, a microscopic transport theory in the diffusive
limit usually based on conservation laws, incorporation of gain
or absorption into generalized conservation laws, as well as
observing the occurrence of a threshold behavior of the light
intensity.

Anderson localization has been shown [15,16] to orig-
inate from repeated self-interference of diffusive modes.
In experiments [17–19] the authors have tested this. Since
intensity diffusion is solely based on energy conservation,
a rigorous and consistent framework is needed to describe
the interplay between coherent amplification and localization,
especially since coherent amplification is expected to enhance
transmission whereas localization tends to stop light transport
altogether. This interesting subject [20] is also discussed in the
context of random lasing [8,21], where it has been shown by
measuring the photon statistics [22] that the laser emission is
due to coherent feedback and occurs from spatially confined
spots in the sample. A theoretical attempt [23] to independently
explain such phenomena has been proposed based on scatterers
statistically forming ring resonators within the sample, which
is able to provide a feedback mechanism.

Despite the issue of transport and localization, also the
onset of lasing behavior, the crossing of the so-called laser
threshold, has triggered still ongoing publications [9,24–26]
for the last decades. On the theoretical side, the difficulty lies in
the use of static gain below threshold, which is perfectly valid
unless the threshold is reached. Beyond the laser threshold,
the laser dynamics have to be explicitly taken into account.
Such a threshold behavior has to be carefully respected and

incorporated in a consistent way into any theory of transport
and localization.

In the present paper we clarify this subject by presenting
a semianalytical general theory of light propagation and
localization effects in the presence of optical gain, and
consistently discuss the occurrence and influence of a growth
threshold on the single-particle propagator as well as on the
energy density correlation function, related to the intensity in
the sample. In this way we set the last stage within the range
of linear response theory, which then will serve as a basis to
involve the actual lasing dynamics. This dynamical behavior
is, however, not the subject of this article and will be presented
in forthcoming publication.

II. MODEL AND THEORY

A. Basic setup

Systems of significant experimental relevance [5,6,8–12]
consist of (almost) spherical scatterers embedded into a
background medium forming some emulsion. For a theoretical
description we therefore consider identical spherical scatterers
located at random positions. The scatterers as well as the
background medium are respectively assumed to be homo-
geneous and hence will be described by dielectric constants
εs and εb, respectively. Within a semiclassical context linear
absorption and optical gain will be represented by a finite
positive or negative part of the dielectric function, so in
general Imεs �= 0 �= Imεb is assumed. Throughout the paper
we neglect polarization effects and therefore consider the
scalar wave equation which has been Fourier transformed from
time t to frequency ω and reads

ω2

c2
ε(�r )�ω(�r ) + ∇2�ω(�r ) = −iω

4π

c2
jω(�r ), (1)

where c denotes the vacuum speed of light and jω(�r ) the
current. The dielectric constant ε(�r ) = εb + �ε V (�r ), where
the dielectric contrast has been defined as �ε = εs − εb,
describes the arrangement of scatterers through the function
V (�r ) = ∑

�R S �R (�r − �R ), with S �R (�r ) a localized shape func-
tion at random locations �R. The intensity is then related to
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the field-field correlation function 〈�(�r, t )�∗(�r ′,t ′ )〉; here
angular brackets 〈. . .〉 denote ensemble or disorder average.
To calculate the field-field correlation the Green’s function
formalism is best suited; the (single-particle) Green’s function
is related to the (scalar) electrical field by

�(�r, t ) =
∫

d3r ′
∫

dt ′G(�r ,�r ′ ; t ,t ′ )j (�r ′,t ′ ) . (2)

The Fourier transform of the retarded, disorder-averaged
single-particle Green’s function of Eq. (1) reads,

Gω
�q = 1

εb(ω/c)2 − |�q|2 − �ω
�q

, (3)

where the retarded self-energy �ω
�q arises from scattering

off the random “potential” −(ω/c)2(εs − εb)V (�r ). Using the
Green’s function the mode density N (ω) may be expressed as
N (ω) = −(ω/π )ImGω

0 , with the abbreviation used throughout
this publication Gω

0 ≡ ∫
d3q/(2π )3 Gω

�q .
In order to study the transport of the above-introduced

field-field-correlation we consider the so-called 4-point cor-
relation function, defined in terms of the nonaveraged Green’s
functions Ĝ, Ĝ∗ in momentum and frequency space as
�ω

�q �q ′ ( �Q,	) = 〈Ĝω+
�q+ �q ′+

Ĝ
ω− ∗
�q ′− �q−

〉. Here we have introduced the

usual [33] center-of-mass (�q, ω) and relative ( �Q, 	) frequen-
cies and momenta: The variables 	, �Q are associated with the
time and position dependence of the averaged energy density,
with Q̂ = �Q/| �Q|, while ω± = ω ± 	/2 and �q± = �q ± �Q/2,
etc., are the frequencies and momenta of in- and out-going
waves, respectively.

The intensity correlation, or disorder-averaged particle-hole
Green’s function, �ω

�q �q ′ ( �Q,	), obeys the so-called Bethe-
Salpeter equation

��q �q ′ = GR
q+ (ω+)GA

q− (ω−)

×
[
δ(�q − �q ′) +

∫
d3q ′′

(2π )3
γq q ′′ ��q ′′ �q ′

]
. (4)

By utilizing the known averaged single-particle Green’s
function, cf. Eq. (3), on the left-hand side of Eq. (4), the
Bethe-Salpeter equation may be rewritten as kinetic equation,
see, e.g., Ref. [33],

[
ω	

Reεb

c2
− Q (�q · Q̂) + i

c2τ 2

]
�ω

�q �q ′

= −iImGω
�q

[
δ(�q − �q′) +

∫
d3q ′′

(2π )3
γ ω

�q �q ′′�
ω
�q ′′ �q ′

]
. (5)

In order to analyze the correlation function’s long-time
(	 → 0) and long-distance (| �Q| → 0) behavior, terms of
O(	2,Q3,	Q) have been neglected here and throughout
this paper. Equation (5) contains both the total quadratic
momentum relaxation rate 1/τ 2 = c2 Im(εbω

2/c2 − �ω) (due
to absorption or gain in the background medium as well as
impurity scattering) and the irreducible two-particle vertex
function γ ω

�q �q ′( �Q,	).
To solve this equation, the technique of expansion into

moments is used. The technical details of this expansion are

discussed in Sec. II B. The reader not interested in such details
may skip this and readily proceed to Sec. II C.

Furthermore it is to be noted that the energy conservation is
implemented into the solution of the Bethe-Salpeter equation
in a field theoretical sense by a Ward identity (WI) which has
been derived for the photonic case in Ref. [33], and which for
scalar waves takes the exact form

�
ω+
�q+ − �

ω− ∗
�q− −

∫
d3q ′

(2π )3

[
G

ω+
�q ′+

− G
ω− ∗
�q ′−

]
γ ω

�q ′ �q( �Q,	)

= fω(	)

[
Re�ω

�q +
∫

d3q ′

(2π )3
ReGω

�q ′ γ
ω
�q ′ �q( �Q,	)

]
. (6)

The right-hand side of Eq. (6) represents reactive effects (real
parts), originating from the explicit ω2 dependence of the
photonic random “potential.” In conserving media (Imεb =
Imεs = 0) these terms renormalize the energy transport veloc-
ity vE relative to the average phase velocity cp without destroy-
ing the diffusive long-time behavior [28,33]. In the presence
of loss or gain, however, these effects are enhanced via
the prefactor fω(	) = (ω	Re�ε + iω2Im�ε)/(ω2Re�ε +
iω	Im�ε), which now does not vanish in the limit 	 → 0.

B. Expansion of two-particle Green’s function into moments

In order to extract a diffusion pole structure out of the
Bethe-Salpeter equation (4), the correlator or equivalently the
�q ′ integrated correlator

��q =
∫

d3q ′

(2π )3
� �q �q ′ (7)

has to be decoupled from the momentum-dependent prefactors
with the help of some approximation scheme. In this subsection
we discuss this procedure in analogy to the argumentation
for electronic correlations presented in Ref. [27] (see also
Ref. [14]). Such an approximation must obey the results
of the so-called ladder approximation, and it must incor-
porate the set of physically relevant variables involved in
observed phenomena. In a first step we use the bare first two
moments of the correlation function ��q defined according
to

�ρρ( �Q,	) =
∫

d3q

(2π )3

∫
d3q ′

(2π )3
��q �q ′ , (8)

�jρ( �Q,	) =
∫

d3q

(2π )3

∫
d3q ′

(2π )3
(�q · Q̂)��q �q ′ , (9)

respectively. The second step is to recognize that these bare
moments are related to physical quantities, the energy density
correlation P ω

E ( �Q,	), and the current-density correlation
Jω

E ( �Q,	) by dimensional prefactors:

P ω
E (�Q,	) =

[
ω

cp

]2

�ρρ ⇔ �ρρ =
[
cp

ω

]2

P ω
E (�Q,	), (10)

Jω
E (�Q,	) =

[
ωvE

cp

]
�jρ ⇔ �jρ =

[
cp

ωvE

]
Jω

E (�Q,	) . (11)
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FIG. 1. Ladder approximation of the total particle-hole vertex.
The diagrams on the left-hand side form a geometrical series and
may therefore easily be summed up analytically.

The projection of the correlator ��q , Eq. (7), onto the bare
moments �ρρ(�q,	) as defined in Eq. (8), and �jρ(�q,	), shown
in Eq. (9), is therefore given by∫

d3q ′

(2π )3
��q �q ′ = A(�q )∫

d3q ′
(2π)3 A(�q ′)

�ρρ( �Q,	)

+ B(�q )(�q · Q̂)∫
d3q ′
(2π)3 B(�q ′)(�q ′ · Q̂)2

�jρ( �Q,	), (12)

where the projection coefficients A(�q ) and B(�q ) are to be
determined in the following. For obvious reasons in this
expansion the bare moments may be substituted by their
physical counterparts energy density P ω

E in Eq. (10) and
current density Jω

E ( �Q,	) from Eq. (11). The expansion
coefficients A(�q ) and B(�q ) in Eq. (12) behave uncritically
under localization, so they can be determined using the
simple ladder approximation, where all expressions are known
exactly. The ladder approximation of the two-particle vertex
function is explicitly illustrated in Fig. 1. In the following
we use this approximation and demonstrate how to obtain the
expansion coefficients from it. In the ladder approximation the
zeroth bare moment is given by

�L
ρρ( �Q,	) =

∫
d3q

(2π )3
[G�q+( �Q,	)G∗

�q− ( �Q,	)]2�L

= 1

γ̃ 2
0

�L; (13)

the superscript L refers to the ladder approximation and in the
last step the product

∫
d3q

(2π)3 [G�q+ ( �Q,	)G∗
�q− ( �Q,	)]2 has been

expanded up to linear order in �q; furthermore the renormalized
vertex γ̃0 is given by

γ̃0 =γ0+fω(	)
(Re γ0G0+Re �)

Im G0
− ω2Im εb

Im G0
, (14)

where γ0 is the bare vertex and fω(	) arising from the Ward
identity has been defined in Eq. (6). Within the simple ladder
approximation the bare moment �L

jρ( �Q,	) defined in Eq. (9)
is thus given by

�L
jρ(�Q,	)=

∫
d3q

(2π )3
(�q · Q̂)G�q+G

∗
�q−

∫
d3q ′

(2π )3
G�q ′+G

∗
�q ′−
�L .

(15)

Following the above strategy and expanding the product
G�q ′+G∗

�q ′−
under the second integral up to first order in �q ′ one

obtains the expression

�L
jρ( �Q,	) = 1

γ̃0
�L

∫
d3q

(2π )3
(�q · Q̂)G�q+G∗

�q− . (16)

By now employing the same expansion to the remaining
product of the Green’s function one eventually finds

�L
jρ( �Q,	) = �L

γ̃0

∫
d3q

(2π )3
(�q · Q̂)

1

2

�G2
�q(�q · Q̂)Q

γ̃0�G0
, (17)

where the abbreviation �G ≡ G − G∗ has been introduced
and will be used throughout this paper.

In the next step of determining the expansion coefficients
A(�q ) and B(�q ) defined in Eq. (12) we go back to the field-
field correlation function ��q �q ′ . Within the uncritical ladder
approximation the two-particle Green’s function is given by

∫
d3q ′

(2π )3
��q �q ′ = [G�q+G∗

�q− ]�L

∫
d3q ′

(2π )3
G�q ′+G∗

�q ′−
. (18)

Employing again the momentum expansion of the single-
particle Green’s function, Eq. (18) can be simplified to yield

��q = �G�q
γ̃ 2

0 �G0
�L + 1

2

�G2
�q(�q · Q̂)Q

γ̃ 2
0 �G0

�L. (19)

Finally we are in the position to start putting things together.
By using the above given momentum expansion, Eq. (19),
together with the expressions given in Eq. (17) and in Eq. (13)
in conjunction with the proposed projection, or expansion
into moments, Eq. (12), the following relation is eventually
obtained:

�G�q
γ̃ 2

0 �G0
�L + 1

2

�G2
�q(�q · Q̂)Q

γ̃ 2
0 �G0

�L

= A(�q )∫
d3q ′
(2π)3 A(�q ′)

1

γ̃ 2
0

�L + B(�q )(�q · Q̂)∫
d3q ′
(2π)3 B(�q ′)(�q ′ · Q̂)2

× �L

γ̃0

∫
d3q

(2π )3
(�q · Q̂)

1

2

�G2
�q(�q · Q̂)Q

γ̃0�G0
. (20)

By comparison of coefficients in Eq. (20), the demanded
coefficients A(�q ) and B(�q ) of the expansion into moments,
Eq. (12), can now be determined to be

A(�q ) = �G�q, B(�q ) = �G2
�q . (21)

Employing those expressions for the expansion coefficients,
one may eventually express the two-particle correlator ��q �q ′ in
the following way:

∫
d3q ′

(2π )3
��q �q ′ = �G�q(

ω
cp

)2∫ d3q ′
(2π)3 �G�q ′

P ω
E ( �Q,	)

+ �G2
�q(�q · Q̂)(

ωvE
cp

)∫
d3q ′
(2π)3 �G2

�q ′(�q ′ · Q̂)2
Jω

E ( �Q,	).

(22)

Equation (22) represents the complete expansion of the
intensity correlator into its moments. This will be used in
the next subsection to decouple and therefore solve the
Bethe-Salpeter equation.
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C. General solution of the Bethe-Salpeter equation

The disorder-averaged intensity correlation, the two-
particle Green’s function, obeys the Bethe-Salpeter equation,
see Eq. (4),

��q �q ′ =Gω+
q+ G∗ ω−

q−

[
1+

∫
d3q ′′

(2π )3
γq q ′′ ��q ′′ �q ′

]
; (23)

as already discussed the Bethe-Salpeter equation may be
rewritten into the kinetic equation given in Eq. (5),

[ω	2Re ε − Q(�q · Q̂) + �� − ω2�ε]��q

= �G�q +
∫

d3q ′

(2π )3
�G�qγ�q �q ′ ��q ′ . (24)

To find the solution of Eq. (24), in a first step one sums in
Eq. (24) over momenta �q, incorporates the generalized Ward
identity as given in Eq. (6), and subsequently expands the
obtained result for small internal momenta Q and internal fre-
quencies 	. It is also essential to employ the decoupling shown
in Eq. (22). Eventually after some algebraic manipulations the
generalized continuity equation for the energy density is found
to be

	P ω
E + QJω

E = 4πi ω N (ω)

g
(1)
ω [1 + �(ω)] c2

p

+ i
[
g(0)

ω + �(ω)
]

g
(1)
ω [1 + �(ω)]

P ω
E ,

(25)

which represents energy conservation in the presence of optical
gain and/or absorption.

Within the standard solution procedure the next step is to
obtain a linearly independent equation which also relates the
energy density P ω

E and the current density Jω
E . This is realized

in a similar way to the above; one first multiplies the kinetic
equation (24), by the projector [�q · Q̂] and then follows the
above outlined recipe to eventually obtain the wanted second
relation. This is the so-called current relaxation equation[

ω	
Reεb

c2
+ i

c2τ 2
+ iM(	)

]
Jω

E +Ã QP ω
E = 0 , (26)

relating as demanded energy density P ω
E and energy density

current Jω
E and furthermore introducing the so-called memory

function M(	) according to

M(	)=
i
∫

d3q

(2π)3

∫
d3q ′
(2π)3[�q ·Q̂]�Gω

�q γ ω
�q �q ′

(
�Gω

�q ′
)2

[�q ′ ·Q̂]∫
d3q

(2π)3 [�q ·Q̂]2
(
�Gω

�q
)2 , (27)

where γ ω
�p �p′ ≡ γ ω

�p �p′ ( �Q,	) is the total irreducible two-particle
vertex, which will be discussed in more detail in the following
subsection.

So far, two independent equations (25) and (26), have been
obtained, both of them relating the current density Jω

E and
density P ω

E . Therefore one may now eliminate one of the two
variables in this linear system of equations. One chooses to
combine the two equations to find an expression for the energy
density,

P ω
E (Q,	) = 4πiN (ω)/

(
g(1)

ω [1 + �(ω)] c2
p

)
	 + iQ2D + iξ−2

a D
, (28)

exhibiting the expected diffusion pole structure for noncon-
serving media; i.e., in the denominator of Eq. (28) there

appears an additional term as compared to the case of
conserving media. This is the term ξ−2

a D, sometimes referred
to as the mass term, accounting for loss (or gain) to the intensity
not being due to diffusive relaxation. In Eq. (28) also the
generalized, 	-dependent diffusion coefficient D(	) has been
introduced via the relation

D(	)[1 − i 	ωτ 2Reεb] = Dtot
0 − c2τ 2D(	)M(ω). (29)

Furthermore, Eq. (28) also introduces the absorption or gain
induced growth or absorption scale ξa of the diffusive modes,

ξ−2
a = rεAε − 2ω2Imεb

2Reεb − AεBε/ω

1

ωD(	)
, (30)

which is to be distinguished from the single-particle or ampli-
tude absorption or amplification length. The diffusion constant
without memory effects in Eq. (29), Dtot

0 = D0 + Db + Ds ,
consists of the bare diffusion constant [28],

D0 = 2vEcp

πN (ω)

∫
d3q

(2π )3
[�q · Q̂]2

(
ImGω

�q
)2

, (31)

and renormalizations from absorption or gain in the back-
ground medium (Db) and in the scatterers (Ds),

Db = (ωτ )2 Imεb D̃0/4, Ds = rεAετ
2D̃0/8, (32)

where D̃0 is the same as in Eq. (31), with (ImGω
�q )2 replaced by

Re(Gω 2
�q ). In the above Eqs. (30)–(32) the following short-hand

notations have been introduced,

uε = Im(�ε�ω)

Im(�εGω
0 )

, rε = Im�ε/Re�ε,

Aε = 2[uεReGo + Re�o],

Bε = (Re�ε)2 + (Im�ε)2

2ω2(Re�ε)2
.

D. Vertex function and self-consistency

From equations (27) and (29) it is clear that the energy
density or two-particle function given in Eq. (28) still depends
on the full two-particle vertex γ ω

�q ′ �q . Before discussing the
vertex function, we want to briefly recall some arguments
concerning dissipation. As a simplified argument to better
understand the physical content of the presented systems, one
might consider a damped harmonic oscillator. The damping
term clearly introduces dissipation as it breaks time-reversal
symmetry. However, the time-reversed solution is still damped
with the very same damping constant. This shows that the
dissipation rate itself is invariant under time reversal, which at
first sight might sound surprising.

Bearing this in mind one may carefully analyze the vertex
γ ω

�q ′ �q for the self-consistent calculation of M(	) [16,32],
exploiting time-reversal symmetry of propagation in the
active medium. In the long-time limit (	 → 0) the dominant
contributions to γ ω

�q ′ �q are the same maximally crossed diagrams
(Cooperons) as for conserving media, which may also be
disentangled. In Fig. 2 the disentangling of the Cooperon
into the regular diffusion ladder is demonstrated. The internal
momentum argument of the disentangled irreducible vertex
function in the second line of Fig. 2 is replaced by the new
momentum �Q = �k + �k′. By the described procedure γ ω

�q ′ �q now
acquires the absorption (gain) induced decay (growth) rate
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γ ω
k

(Q Ω),
k’

k − −k’

k + +k’

γ ω
k

(Q Ω),
k’

k +

k − −k’

+k’

FIG. 2. The upper panel shows a diagrammatic expansion of
the irreducible two-particle vertex γ . The lower panel displays
the disentangled Cooperon with changed momentum arguments as
discussed in the text below.

ξ−2
a D. Finally the memory kernel M(	) reads

M(	)

= − (2vEcp)2 uε[2πωuεN (ω) + rεAε − 2ω2Imεb]

πωN (ω)D0D(	)

×
∫

d3q

(2π )3

∫
d3q ′

(2π )3

[�q · Q̂]|ImGq |(ImGq ′ )2[�q ′ · Q̂]
−i	
D(	) + (�q + �q ′)2 + ξ−2

a

.

(33)

Equations (29)–(33) constitute the self-consistency equations
for the diffusion coefficient D(	) and the growth or decay
length ξa in presence of absorption or gain.

III. RESULTS AND DISCUSSION

A. Diffusion constant and its renormalization

In Eq. (29) the diffusion coefficient D(	,ω) has been shown
to consist of a memory-induced part already discussed in
the last section and a part Dtot

0 (ω), given by the so-called
bare diffusion constant D0 defined in Eq. (31) and additional
contributions solely due to a finite gain or absorption. These
renormalizations of the diffusion constant are

Db = (ωτ )2 Imεb D̃0/4, Ds = rεAετ
2D̃0/8 . (34)

Since we are interested in amplifying systems with negligible
absorption we now want to discuss setups with a finite optical
gain coefficient inside the scatterers only, which are themselves
embedded in a conserving media, e.g., air. In the background
Im εb is identical to zero and therefore also Db. The described
systems are of strong experimental interest [9,21] and are still
not completely understood [8].

Before starting with various examples we want to point
out that in dealing with optically amplifying media one has
to choose parameters carefully, guaranteeing that the system
remains below its laser threshold. This will be discussed in
detail in a following subsection. The presented numerical
results utilize parameter sets which do show below-threshold
behavior within the considered frequency range. In particular
we present results for three characteristic parameter sets; the

setup is an optically neutral background medium such as air
(εb = 1.0) spherical scatterers (filling fraction ν = 30%) with
three different gain strengths (εscat = 10.0 − {0,1 × 10−4,1 ×
10−2}I ). The system with purely real dielectric functions,
i.e., conserving media, serves as a reference system, and the
gain is either typical (Im εscat = −1 × 10−4) or rather large in
magnitude; here Im εscat = −1 × 10−2.

In the upper panel of Fig. 4, the real part of the diffusion
coefficient for a nondissipative system [black (solid) line] is
compared to systems exhibiting gain [colored (dashed and
dotted) lines]. The diffusion constant has been renormalized
to its bare coefficient; cf. Eq. (31). As already discussed, small
gain as compared to threshold gain disadvantages localization,
whereas with increasing gain also the diffusion increases.
For the discussed gain values this effect is inverted within
higher resonances, because they are much closer to threshold,
where gain narrowing has already overcome this suppression.
Although the effects of gain on transport are rather small,
the small but finite gain introduces a completely new feature,
an imaginary part of the diffusion constant at zero internal
frequency, i.e., an imaginary part to the dc diffusion coefficient
or likewise to the dc conductivity. The normalized imaginary
part of D is displayed in Fig. 4, normalized to the bare diffusion
coefficient D0. In the next subsection it will be shown how
this finite imaginary part may give rise to intensity oscillation
within the sample.

The additional contribution Ds from Eq. (34) to the
diffusion constant provided by the amplifying scatterers is
presented in Fig. 3. This contribution is a direct consequence
of the photonic Ward identity, Eq. (6), and establishes the
conserved energy density. However, for reasonable gain values
considered here, this correction is seen to be orders of
magnitude smaller than the diffusion constant; therefore its
influence on the transport properties is only weak.

For completeness and later use we also display the bare
diffusion constant D0 and the real part of the full diffusion
coefficient. The bare diffusion constant as shown in Fig. 5
exhibits strong variations as function of frequency but only
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FIG. 3. (Color online) Normalized extra contribution to the
diffusion coefficient Ds/D0 for different values of the optical gain as
a function of the dimensionless frequency.
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FIG. 4. (Color online) Normalized real part (upper panel) and
imaginary part (lower panel) of the diffusion coefficient D(	 = 0)
for different values of optical gain as indicated as a function of the
dimensionless frequency. For the displayed frequency range, the gain
value is below threshold.

small variation with increasing optical gain. The full diffusion
coefficient in Fig. 5 follows closely the behavior of the bare
diffusion, as already indicated in Fig. 4. For very small and
also for large frequencies the difference is negligible; visible
effects are found within an intermediate frequency range only.

B. Length and time scales

Within disordered systems there exist different length or
time scales, related to both single and two-particle quantities.
Additionally, a geometrical mean distance between each two
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FIG. 5. (Color online) Real part of diffusion coefficient D(0)
(upper panel) and the bare diffusion coefficient D0 (lower panel) for
different values of the optical gain as a function of the dimensionless
frequency. The diffusion coefficients are shown in natural units
(2πr0c), r0 is the scatterer’s radius, and c is the vacuum speed of
light. The influence of optical gain on diffusion is seen to be small.
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FIG. 6. (Color online) Displayed here is the single-particle
scattering mean-free path ls for amplifying scatterers and conserving
scatterers. The difference between the two is seen to be small and
mainly manifests itself in narrow dips and peaks.

scatterers rm can be defined by rm

r0
=3

√
4π
3ν

, where r0 is the
scatterer’s radius and ν the filling fraction. For a filling fraction
of ν = 30% this ratio becomes rm

r0
= 2.41.

The most important single-particle length is the so-called
scattering mean-free path ls defined in the Green’s function

G�q(ω) = 1
ω2

c2 ε0 − q2 − �(ω)
, (35)

where the imaginary part of the self-energy introduces the
decay length ls :

q = ω

c

√
ε0 −→ Re(q) + i

2ls
, (36)

ls = 1

2Im[
√

q2 + iIm�(ω)]
. (37)

The decay length may equivalently be represented as a lifetime
of the corresponding k mode.

In Fig. 6 the scattering mean-free path is shown as a function
of frequency. The strong variation with frequency is known to
be typical for the low-density approximation [29–31] as used
in this paper. The minor dependence on gain is in agreement
with the previous subsection and mainly established in slightly
more pronounced dips and enhanced peaks.

Before proceeding, we want to emphasize that in the case
of real dielectric constants the scattering mean-free path sets
the scale determining the loss due to scattering out of a given
k mode, whereas in case of gain media the originally k mode
experiences also an amplification. In this way a competition
is established between scattering and gain. Once the optical
gain is strong enough to compensate the scattering loss, i.e.,
Im�(ω) = 0, that fact is interpreted as the crossing of the
laser threshold [8,9,11,21]. This particular case consequently
defines the range of validity of the presented theory, which
cannot describe the onset of the laser dynamics. The gain
coefficient is therefore to be chosen such that the system
remains below its threshold gain value. This will be discussed
in detail in Sec. III C below.

Let us now return to the discussion of the intensity and the
scales related to it. The two-particle Green’s function as given
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in Eq. (28) contains two obvious scales originating solely from
finite values of the gain coefficient. These length scales may
be defined by

�a = 2π

Re
(√

1
/
ξ 2
a

) , (38)

�osc = 2π

Im
(√

1
/
ξ 2
a

) , (39)

where �a represents the amplification or absorption length of
the intensity and �osc marks the length over which the intensity
oscillates, where ξ 2

a has already been defined in Eq. (30). The
corresponding time scales may then be defined as

1

τa

= D

ξ 2
a

, (40)

1

τosc
= Q2ImD. (41)

The amplification or growth length �a is displayed in Fig. 7 as
a function of the external light frequency. The single scatterer
Mie resonances are clearly visible as well as strong dependence
on the gain value. However, even for the strongest presented
gain, the magnitude of the amplification length remains at least
an order of magnitude larger than the corresponding scattering
mean-free path, shown in Fig. 6. Additionally, we have plotted
the oscillation length �osc in Fig. 7. As compared to the
amplification length the resonant character of the scattering is
even more pronounced and �osc of course also strongly depends
on the gain value. The magnitude is even significantly larger
than the amplification length �a . This fact may represent a
large obstacle in experiments. The physical picture presents
itself now as the following: If one measures the intensity
distribution between two points in coordinate space in the
sample at a given distance r , i.e., at a finite value of Q

in Eq. (28), one will measure a diffusive intensity decay as
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FIG. 7. (Color online) Displayed in the upper panel is the two-
particle amplification length la for different values of the optical gain
as a function of the dimensionless frequency. Displayed in the lower
panel is the two-particle oscillation length lo for different values of
the optical gain as a function of the dimensionless frequency.
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FIG. 8. (Color online) Displayed in the upper panel is the two-
particle amplification time τa for different values of the optical gain
as a function of the dimensionless frequency. In the lower panel we
show the critical length Rcrit, characterizing the threshold volume in
which the intensity experiences a laser-like growth behavior.

characterized by the real part of the diffusion constant plus an
exponential amplification due to �a and additionally there is an
amplitude modification proportional to cos(2π�a/�osc) in case
one chooses the measuring distance to be �a . This means,
in general, that even though the intensity has experienced
an exponential increase by a factor of e, this oscillating
modulation factor of the intensity is close to unity and therefore
possibly hard to detect.

Slightly changing the point of view let us now turn to
the time scales. In the upper panel of Fig. 8 we present the
gain-induced growth time τa defined in Eq. (40). For obvious
reasons, τa displays a qualitatively similar behavior as the
above discussed �a; i.e., for frequencies within the scattering
(Mie) resonances, the time to exponentially increase the
intensity is significantly smaller than for frequencies outside
this range, which reflects the fact that the gain coefficient is
confined to the scatterer’s volume only.

Using the gain-induced growth rate τa as defined in Eq. (40),
the intensity Green’s function Eq. (28) may now be rewritten as

P (Q,	) = α

−i	 + iQ2ImD + Q2ReD − 1/τa

, (42)

where the coefficient α may symbolically contain all the
factors explicitly shown and discussed in Eq. (28). By
inspection of Eq. (42) and comparison with the Green’s
function Eq. (35), it is to be recognized that the energy
density P (Q,	) also exhibits a laser-like threshold behavior
in complete analogy to the single-particle Green’s function.

Before discussing this threshold behavior in detail, we want
to remind the reader that our theory started with calculating
the electrical field-field correlator at different positions and
frequencies, Eq. (4), eventually leading to the evaluation the
two-particle Green’s function given in Eq. (28). This means
that the momentum Q appearing in Eq. (28) represents in
Fourier space this relative position within the sample. In three
dimensions the momentum Q therefore defines a volume unit
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within the sample. This volume is carefully to be distinguished
from all other length scales, e.g., the sample volume. It is
merely the volume within which one considers correlation
effects of the diffusing behavior of the intensity.

In analogy to Im� = 0 in the single-particle Green’s
function the threshold condition for the energy density now
reads as follows:

Q2ReD − 1/τa � 0 (43)

⇔ 4π2

R2
crit

ReD − 1/τa = 0, (44)

leading to the definition of a third, a critical, length scale:

Rcrit = 2π
√

τaReD. (45)

This length describes the volume over which the energy density
or intensity can compensate the diffusive loss by amplification
due to the finite optical gain.

As in the above described case of a single-particle Green’s
function, the value Rcrit marks the point in parameter space
where the laser threshold has been crossed. From the the-
oretically and experimentally known behavior of a lasing
Mie sphere [9,24–26] and the theoretical description of the
self-energy �(ω) by the single-scatterer t matrix [29,30], and
the definitions in Eqs. (40) and (30), it becomes clear that in the
limit of reaching the laser threshold within a Mie resonance τa

is approaching zero, τa → 0. And therefore the corresponding
critical volume of the light intensity becomes pointlike. In
situations where the optical gain is still below its threshold
value with respect to the single-scatterer Mie resonance, there
is consequently a finite τa and therefore a finite critical volume
described by Rcrit. In the limit of large gain it becomes
clear from the definitions in Eqs. (40) and (38) that Rcrit in
Eq. (45) approaches the same order of magnitude as �a , which
is perfectly meaningful, since in this limit the smallest and
all-dominant length scale is set by the amplification length.
For the most interesting intermediate range, we show the
critical length Rcrit in Fig. 8 as a function of light frequency for
different gain strengths. Already for the gain values discussed
in this publication, which are significantly below threshold,
the ratio Rcrit/r0 becomes as small as approximately 800; cf.
lower panels of Figs. 8 and 10.

Finally, we emphasize that once a Mie resonance is close
to lasing or the gain is very strong, the growth time τa may
become small and therefore the critical distance Rcrit may
also become small as shown in the lower panel of Fig. 8. In
general the length Rcrit is not restricted to values above, e.g., the
single-particle scattering mean-free path. This is because the
underlying physics is not scattering but frequency-independent
amplification.

C. Gain and laser threshold

In this last subsection, we want to more closely discuss
the appearance of a laser threshold within our theory. Since
we approximate the single-particle self-energy by the single-
particle scattering matrix calculated within Mie theory, we first
recall some basic and well-known facts. The resonant features
representing the resonant scattering modes arise due to poles in
the scattering coefficients, forming the t matrix. These poles,

or zeros of the coefficients’ denominators, occur at complex
frequencies: The closer the pole happens to be to the real
frequency axes, the more pronounced is the feature; i.e., the
resonance becomes narrower and deeper. The effect of optical
gain modeled as an imaginary part of the dielectric function, as
is done in this paper, is to lift the poles; i.e., it shifts the complex
poles toward the real axes. In this way a gain narrowing
is observed. The gain value corresponding to infinitesimal
width of the resonance is believed to correspond to the
experimentally observable laser threshold [9]. This situation
coincides with a scattering pole right on the real frequency
axes; i.e., the scattering resonance approaches the limiting
shape of Dirac’s delta function with negative sign. Using gain
values above threshold causes poles in the upper complex
frequency half plane, constituting unphysical behavior due to
the neglected laser dynamics. If the complex frequency poles
are in the upper half plane, the theory still predicts a resonance
feature, just with the “wrong” sign; i.e., instead of dips in the
retarded self-energy one now observes peaks (see also Fig. 9).
Additionally the larger the gain, the less pronounced the feature
becomes, because the poles are then pushed away from the real
axes in the complex frequency plane. This contains the risk
of utilizing much too high gain values, with poles in the
negative complex frequency half plane being at large distances
to the real axes and therefore yielding very weak features
that do not necessarily break causality of the single-particle
Green’s function, for instance, and might be overlooked at first
glance.

To illustrate the above discussed subject in and out of
resonance, we considered a system slightly off-resonant but
close to the fifth Mie resonance as depicted in Figs. 9 and
10. In Fig. 9 the imaginary part of the self-energy as a
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FIG. 9. (Color online) The imaginary part of the self-energy in
the vicinity of the fifth Mie resonance for different but fixed values
of gain. Increasing gain clearly yields narrowing and deepening until
the laser threshold is reached; the curve approaches the shape of a
delta function. Beyond this point the theory is not valid anymore due
to physical reasons. For completeness we also show the last curve
Imεs = −0.0026 representing a system which has obviously crossed
the threshold. The vertical line marks the frequency discussed in
Fig. 10; see also text below.
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FIG. 10. (Color online) The upper panel shows the imaginary
part of the self-energy at a fixed frequency (ω/ω0  2.1710269) as
a function of gain; cf. Fig. 9. The vertical line signalizes the zero
of Im�. From Fig. 9 and the text below, it is clear that this zero
indicates that the laser threshold has already been crossed. The points
(a) through (d) correspond to −Imεscat = {0.01,0.018,0.022,0.026},
i.e., to the curves shown in Fig. 9. The intersections with the vertical
line there yield the values shown here. The lower panel displays the
critical length Rcrit as a function of gain. Due to the off-resonant
frequency, Rcrit has a local minimum and increases again with
increasing gain.

function of frequency is presented, the quantity describing
both single-particle scattering and amplification, as discussed
earlier. For different gain values the narrowing and deepening
of the resonance is clearly visible as well as the difference of
systems below and above threshold. The vertical (magenta)
line marks the single, off-resonant frequency for which we
study the self-energy (upper panel) and the critical length Rcrit

(lower panel) as a function of increasing gain, as shown in
Fig. 10.

The behavior of Im� is easily understood by comparison
with Fig. 9. It is to be noted that neither the local minimum
nor the zero define the laser threshold. The behavior of Rcrit as
defined in Eq. (45) is then shown in the lower panel of Fig. 10.

The final increase is a consequence from the gain narrowing
of the resonance. This decreases both the single-particle
scattering rate and the intensity emission rate 1/τa defined in
Eq. (40) and therefore increases the critical volume. Following
the above given line of arguments, it becomes clear that once
a frequency closer to the resonance is chosen, the minimum
value of Rcrit decreases because the scattering rate and the
intensity emission rate both increase. Even for a finite spectral
width of the resonance, i.e., for a system below threshold, the
value of the critical length may become quite small.

IV. CONCLUSION

In conclusion, we have presented a semianalytical theory
for scalar waves propagating in random, dissipating, i.e., also
amplifying, media. The focus has been put on the influence
of localization effects and finite gain on intensity transport
in general. We found that for reasonable magnitudes of gain,
the impact on transport quantities such as the real part of
the diffusion constant and the scattering mean-free path is
rather small. However, the gain introduces three new length
scales natural to such systems, an amplification length �a ,
an oscillation length �osc, and a critical length Rcrit, the
latter describing the critical volume in which the intensity
experiences a laserlike threshold behavior. The former two
length scales constitute a growth length competing with
the diffusive loss of the intensity and the oscillation period
of the intensity, respectively. Due to its comparably large
magnitude, this oscillation length might be difficult to detect
in experiments. We point out that the critical length, or
equivalently volume, has no lower bound other than zero since,
e.g., for a Mie resonance reaching its lasing threshold, this
volume becomes pointlike. For cases below threshold gain
within the Mie scatterers or off-resonant light, the critical
volume is finite and strongly influenced by the gain coefficient.
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[16] D. Vollhardt and P. Wölfle, Phys. Rev. Lett. 45, 842 (1980);

Phys. Rev. B 22, 4666 (1980).

013814-9

http://dx.doi.org/10.1103/PhysRevE.73.045601
http://dx.doi.org/10.1103/PhysRevE.73.045601
http://dx.doi.org/10.1209/epl/i2006-10059-y
http://dx.doi.org/10.1209/epl/i2006-10059-y
http://dx.doi.org/10.1364/JOSAB.23.002265
http://dx.doi.org/10.1364/JOSAB.23.002265
http://dx.doi.org/10.1103/PhysRevB.73.245107
http://dx.doi.org/10.1103/PhysRevB.73.245107
http://dx.doi.org/10.1088/1464-4258/11/11/114012
http://dx.doi.org/10.1088/1464-4258/11/11/114012
http://dx.doi.org/10.1103/PhysRevE.73.065602
http://dx.doi.org/10.1103/PhysRevE.73.065602
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1038/nphoton.2009.67
http://dx.doi.org/10.1088/0959-7174/13/3/201
http://dx.doi.org/10.1364/OL.31.001432
http://dx.doi.org/10.1103/PhysRevLett.96.083905
http://dx.doi.org/10.1103/PhysRevLett.96.083905
http://dx.doi.org/10.1364/OL.30.002430
http://dx.doi.org/10.1364/OL.30.002430
http://dx.doi.org/10.1364/OL.29.000917
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevB.28.6358
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.45.842
http://dx.doi.org/10.1103/PhysRevB.22.4666


REGINE FRANK AND ANDREAS LUBATSCH PHYSICAL REVIEW A 84, 013814 (2011)

[17] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature
(London) 390, 671 (1997).

[18] F. Scheffold, R. Lenke, R. Tweer, and G. Maret, Nature (London)
398, 206 (1999).

[19] D. S. Wiersma, J. Gomez Rivas, P. Bartolini, A.
Lagendijk, and R. Righini, Nature (London) 398, 207
(1999).

[20] J. C. J. Paasschens, T. Sh. Misirpashaev, and C. W. J. Beenakker,
Phys. Rev. B 54, 11887 (1996).

[21] H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W.
Seelig, X. Liu, and R. P. H. Chang, Phys. Rev. Lett. 84, 5584
(2000).

[22] H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, Phys. Rev.
Lett. 86, 4524 (2001).

[23] V. M. Apalkov, M. E. Raikh, and B. Shapiro, Phys. Rev. Lett.
89, 016802 (2002).

[24] H. M. Nussenzveig, J. Math. Phys. 10, 82 (1969).
[25] K. J. Vahala, Nature (London) 424, 839 (2003).
[26] H. M. Lai, C. C. Lam, P. T. Leung, and K. Young, J. Opt. Soc.

Am. B 8, 1962 (1991).
[27] T. Kopp, J. Phys. C 17, 1897 (1984).
[28] J. Kroha, C. M. Soukoulis, and P. Wölfle, Phys. Rev. B 47, 11093
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