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Abstract. An ultracold gas of interacting fermionic atoms in a three-
dimensional optical lattice is considered, where the lattice potential strength
is periodically modulated. This non-equilibrium system is non-perturbatively
described by means of a Keldysh–Floquet–Green’s function approach for
Mott–Hubbard systems employing a generalized dynamical mean field theory
(DMFT). Strong repulsive interactions between different atoms lead to a Mott
insulator state for the equilibrium system, but the additional external driving
at zero temperature yields a non-equilibrium quantum critical behavior, where
an infinite number of Floquet states arise and a transition to the liquid and
conducting phase is given.
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1. Introduction

The melting of crystals and ice has been intriguing ever since Albert Einstein proposed
his quantum theory of solids [1]. Novel results in quantum and non-equilibrium physics
are pushing us to improve our understanding of how quantum matter behaves at ultra-low
temperatures. In condensed matter physics quantum dynamics can only be analyzed under the
premise of severe influences due to strong coupling to the environment. This aspect makes it
challenging to prepare and control quantum states far from equilibrium. Thus ultracold gases
are perfect systems to study the pure influences of quantum non-equilibrium effects in first
instance, since the properties of such systems can be tuned almost without restrictions. At
this point the reader might ask the question ‘Why non-equilibrium ?’. Whereas calculations in
thermodynamically equilibrated systems are well established in theory, and rather complicated
structures requiring high-end numerics can be solved, it is still a challenge to determine results
for driven systems [2]. Nevertheless those systems are experimentally and technologically
interesting [3–7]. Even if a system is in the steady-state regime, it still does not reside in
thermodynamical equilibrium if it is driven, e.g., by a non-zero current or a difference in the
potential [8], and the reflection of that fact in theory is highly desirable.

2. Theoretical framework

Recently, intriguing experiments on non-equilibrium dynamics of ultracold gases, both
fermionic as well as bosonic, [9–14] have become possible. Among many aspects, also the
long time limit of such non-equilibrium systems has been studied [15–17], and applications
using non-equilibrium processes as a tool for transport in so called quantum ratchets have been
investigated [18].

The Hubbard Hamiltonian is one of the most relevant models for investigating strongly
correlated systems in condensed matter theory, of both bosonic as well as fermionic
nature [19–23]. In this article we study the characteristics of an interacting ultracold Fermi gas
exposed to periodic modulations of the optical lattice strength. This configuration corresponds
to a stationary non-equilibrium state, which requires suitable techniques such as the Keldysh
formalism. The periodic modulation leads to a ’dressing’ of atoms, well known from the
application of light fields in quantum optics. We discuss a dynamical mean field theory (DMFT)
solution [24] for the Floquet–Keldysh [25] approach. The non-equilibrium-caused dressed states
arise as Floquet side bands. In the Mott–Hubbard gap we derive a complicated modulation-
induced structure of many particle states, and therefore a transition from the Mott insulting
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Figure 1. (a) The strong local interaction U between atoms in the equilibrium
system causes the single energy band to split into the lower and the upper
Hubbard band, separated by an excitation gap. (b) Ultracold fermionic atoms
in a three-dimensional optical lattice (black). The optical lattice is periodically
modulated with the frequency �L, yielding a minimum (red) and a maximum
(blue) potential modulation. The periodic modulation introduces an additional,
time-dependent contribution to the local atom energy E(τ ) and the atomic
tunneling amplitude T (τ ) (see text). The sketched potentials of this non-
equilibrium system therefore represent three different snapshots in progress of
the external periodic modulation.

regime to a liquid phase which leads to a finite conductivity. The occupation number for these
gap states is investigated and we find a trapping of population which results in an ‘inversion’
for increasing modulation frequencies.

The Fermi gas in the modulated optical potential is schematically shown in figure 1.
The Mott insulator state in equilibrium is characterized by a tight binding model with strong
repulsive onsite interactions U experimentally determined by a Feshbach resonance. The onsite
interaction leads to a band splitting and the establishment of the characteristic Mott–Hubbard
gap. Periodic modulations of the optical lattice potential V (τ ) influence the behavior of the
tunneling t from one lattice site to the nearest neighbor as well as the onsite energies ε0 at each
lattice site. The equilibrium tunneling amplitude t must be replaced by t + T (τ ); the equilibrium
onsite energy has to be replaced by ε0 + E(τ ) as well. These time τ dependent terms are periodic
themselves. We consider the following Fermi–Hubbard Hamiltonian:

H(τ ) =

∑
i,σ

[ε0 + E(τ )] c†
i,σ ci,σ −

∑
〈i j〉,σ

[t + T (τ )] c†
i,σ c j,σ +

U

2

∑
i,σ

c†
i,σ ci,σ c†

i,−σ ci,−σ . (1)

The onsite repulsion U is considered to be not majorly affected by temporal changes, because it
is large compared to possible effects due to lattice oscillations. Therefore, U is taken as constant
in the following. The index i labels the lattice site and σ the spin; 〈i j〉 implies summation over
nearest neighbors; c†

i,σ and ci,σ create (annihilate) a fermionic atom with spin σ at lattice site i .
The time-dependent contributions due to the periodic modulation of the potential are given by

E(τ ) = E cos(�Lτ) T (τ ) = T cos(�Lτ), (2)

where �L is the frequency of the lattice modulation, τ is the system time and E and T are the
respective amplitudes of the energy and the hopping or tunneling contribution. Note, during
the numerical evaluation the parameters t and T have to be chosen such that for any time τ

the kinetic term in the Hamiltonian, equation (1), does not change sign, i.e. T (τ ) < t ∀τ . The
maximum of the hopping amplitude t is set to be equal 8 D, where D is the half bandwidth.
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Driven systems, such as fermionic atoms in a modulated lattice potential, experience an
energy exchange with their exterior and therefore do not reside in a state of thermodynamical
equilibrium. Due to the non-equilibrium character the system response, as e.g. expressed in the
Green’s function, depends on two distinct time arguments. For instance on a defined starting
point and the elapsed time, or after a change of the reference frame on the center-of-mass time
and the relative time coordinate. The evolution of an equilibrium state in contrast is usually
sufficiently described by the relative time alone. To account for this, Schwinger [26] and in
his footsteps Keldysh [27] designed a theoretical framework. The system in the distant past
(τ = −∞) is considered in a defined state, the interaction is then slowly switched on as time
progresses, the system evolves to the present where measurements are considered, and then it
evolves via (τ = +∞) back to (τ = −∞). Along this path the interaction is switched off. This
particular time contour is also called Schwinger–Keldysh contour. The time arguments of the
Green’s function may be found on upper branch of the contour, evolving from τ = −∞ to +∞

or the time argument may reside on the lower branch, from τ = +∞ to −∞. A matrix Green’s
function is considered according to

G̃(τ1, τ2) =

(
G++(τ1, τ2) G+−(τ1, τ2)

G−+(τ1, τ2) G−−(τ1, τ2)

)
(3)

where the superscripts denote on which branch of the contour (+ = upper; − = lower) the
respective time arguments τ1 and τ2 are found. By a rotation R in the Schwinger–Keldysh space
defined by [27]

R =
1

√
2

(
1 1

−1 1

)
, (4)

the matrix Green’s function can be rewritten in terms of the more familiar advanced and retarded
components of the Green’s function according to

G(τ1, τ2) = R−1G̃(τ1, τ2)R =

(
0 GA(τ1, τ2)

GR(τ1, τ2) GKeld(τ1, τ2)

)
, (5)

where GKeld(τ1, τ2) denotes the Keldysh component of the Schwinger–Keldysh Green’s
function. The assumed periodic driving of the atomic system encourages the use of the Floquet
approach, see e.g. [25]. Then the two-time Green’s function requires a generalized two-time
Fourier transform according to

Gαβ

m n ; σ (k, ω,�L) =

∫ +∞

−∞

dτrel
1

T

∫ +T /2

−T /2
dτcm ei(ω−

m+n
2 �L)τrel × ei(m−n)�Lτcm Gαβ

σ (k, τrel, τcm), (6)

where m, n are the Floquet indices labeling the Floquet modes of the system, which are
interpreted as the quantized lattice oscillations, the phonons. The system is constrained to
absorb and emit energy in multiples of energy quanta h̄�L. The Keldysh indices are α, β = ±,
indicating the branch of the Keldysh contour, and T =

2π

�L
is the time period. The system-time

is shifted to a center-of-motion time τcm =
τ1+τ2

2 and a relative time coordinate τrel = τ1 − τ2. For
completeness and later comparison, we note that for the non-interacting case, i.e. U/D = 0, the
Hamiltonian equation (1) can be solved analytically, yielding

G R
mn(k, ω,�L) =

∞∑
ρ=−∞

Jρ−m

(
E

h̄�L
+ T ε̃k

h̄�L

)
Jρ−n

(
E

h̄�L
+ T ε̃k

h̄�L

)
h̄ω − ρh̄�L − εk + iO

, (7)
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Figure 2. Local self-energy 6αβ within the iterated perturbation theory (IPT)
with its contributing four diagrams. The vertical dashed lines represent the
interaction U . The solid lines correspond to the bath-Green’s functions, the
so-called Weiss-field, Gαβ , cf equation (8). The IPT yields accurate results at
half-filling [30].

where we summed over the spins σ , since they are not influenced by the modulation of the
potential. In the above equation (7) we introduced Bessel functions Jρ−m . We note that εk

is the dispersion induced by the standard hopping t , i.e. its Fourier transform. Furthermore
ε̃k originates in the same way from the modulation-induced hopping contribution T (τ ) and is
therefore time dependent. Apart from the definition of εk, we exclude T from the definition ε̃k.
Finally, ρ is the integer summation index.

To solve the full, i.e. driven and interacting system (U 6= 0) at zero temperature and half
filling, we generalize a DMFT to non-equilibrium. The DMFT [28, 29] maps the interacting
lattice system onto a local impurity model embedded in a bath, which consists of all remaining
lattice sites in integrated form. The local impurity described by a local lattice Green’s function
Gαβ

mn(ω) is related to the bath Green’s function G(ω), the so-called Weiss-field, by the DMFT
self-consistency equation. The local self-energy appearing in the local lattice Green’s function
depends on the Weiss-field, thus closing the self-consistency. The calculation of the self-energy
requires further assumption and is achieved by invoking a so-called impurity solver, the iterated
perturbation theory (IPT) [30], which is here also generalized to non-equilibrium. The IPT, a
diagrammatic method, is demonstrated in figure 2. The DMFT self-consistency equation for the
Hamiltonian equation (1) in the above introduced Schwinger–Keldysh–Floquet space is derived
as[
G−1(ω)

]αβ

mn
=

[
g−1

0 (ω)
]αβ

mn
− αβ t Gαβ

mn(ω) t + αδαβ

E

2

[
δm,n+1 + δm,n−1 + δm+1,n + δm−1,n

]
+ αβ

[
T

2

(
Gαβ

m−1,n(ω) + Gαβ

m+1,n(ω)
)

t − t
(

Gαβ

m,n+1(ω) + Gαβ

m,n−1(ω)
) T

2

]
+ αβ

[
T

2

(
Gαβ

m+1,n+1(ω) + Gαβ

m−1,n−1(ω) + Gαβ

m+1,n−1(ω) + Gαβ

m−1,n+1(ω)
) T

2

]
. (8)

In the above equation (8) the first line on the rhs compares directly to the equilibrium expression,
where the last term in the first line marks the hopping t onto a single site in the lattice and off
this single site (often called impurity). Consequently,

[
g−1

0 (ω)
]αβ

mn
= αδαβ(ω − n�L)δnm . The

second line represents the contribution of the onsite energy modulation originating from the
first term on the rhs of the Hamiltonian equation (1), the Kronecker delta symbols have to be
interpreted as the different absorption and emission processes of lattice quanta which contribute
here. The remaining lines of equation (8), however, represent the part originating from hopping
modulations in the driven system. For instance in the third line, processes are found to be
characterized by a standard kinetic hopping t on (off) the impurity combined with a phonon
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induced hopping T off (on) the impurity. The last line has to be interpreted as the dynamics
where both the hopping on and off the impurity are phonon induced. In equation (8) products of
the form αβ assume either the value +1 if α = β or −1 otherwise. The DMFT, equation (8) in
conjunction with figure 2, offers therefore a solution for a matrix Green’s function, which is of
the matrix dimension 2 × 2 in the Schwinger–Keldysh space, cf equation (5) and of the matrix
dimension n × n in the Floquet space. The index n marks the number of involved Floquet side
bands in the problem.

3. Results

This substantial numerical effort results in the full knowledge of the non-equilibrium
Floquet–Keldysh–Green’s function revealing e.g. the local density of states (LDOS), the non-
equilibrium distribution function and the relaxation times by means of the self-energy. The
assumed initial state is the groundstate of the equilibrium system. From the numerically
computed components of the Green’s function, we define the LDOS N (ω, �L) by the following
expression, where the momentum is integrated out and Floquet indices are summed:

N (ω, �L) = −
1

π

∑
mn

∫
d3kIm GR

mn(k, ω,�L). (9)

We define the total non-equilibrium distribution function Fneq(ω, �L) by the relation∑
m

GKeld
0m (ω, �L) = −2π i

[
1−2Fneq(ω, �L)

] 1

π

∑
n

Im GA
0n(ω, �L), (10)

resulting in the definition of the total distribution function as

Fneq(ω, �L) =
1

2

(
1 +

1

2i

∑
m GKeld

0m (ω, �L)∑
n Im GA

0n(ω, �L)

)
. (11)

A solution for the LDOS, equation (9), is shown in figure 3. There the development of
pronounced Floquet side bands in the LDOS structure is discussed. Especially in figure 4 the
LDOS for single external frequency but for three different hopping amplitude T is shown.
Distinct gap states evolve which induce a transition from the Mott insulator state to the liquid
phase. Both features result in severe changes of the fermionic band structure and therefore cause
significant changes of, e.g., optical and conduction properties. The behavior of the density of
states as a function of the external modulation energy h̄�L exhibits two limiting cases with a
cross-over regime in between them. For the limit of small modulation frequencies h̄�L → 0
it is interesting to note that all Floquet modes gain more and more spectral weight (compare
also figure 5). This signals the onset of an orthogonality catastrophe, as predicted by Anderson
(AOC) [31]. Anderson states that the ground state of the system is the equilibrium state whereas
the zero quasiparticle state does not exist in the fermionic system. The limit of that zero
quasiparticle state would correspond to an infinite number of contributing Floquet modes and
that state would mark a new ground state which is orthogonal to the original equilibrium state,
caused by the change in the potential of the system shown in figure 3. Technically, this is seen
as a drastic enhancement of the arguments of the Bessel functions, e.g. for the non-interacting
expression in equation (7).

At this point, it should be emphasized that any numerical evaluation is always limited
to treatments with a finite number of Floquet modes. Therefore the utilized numerical
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Figure 3. The LDOS N (ω, �L), equation (9), as a function of atomic energy
h̄ω and modulation energy h̄�L. T/D = 3.0, U/D = 4.0 and E/D = 1.0. The
LDOS is displayed as a function of atomic energies h̄ω and lattice modulation
frequencies h̄�L. For the limit of h̄�L → 0 we find that N (ω, �L) is not directly
comparable to the equilibrium ground state, but instead a new ground state is
reached which features the AOC (see text).
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Figure 4. N (ω, �L) as a function of atomic energy h̄ω and for a single
modulation energy h̄�L/D = 1.3. Displayed are three different hopping
strengths T/D = 2.0, 3.0, 4.0, other parameters as in figure 3. With increasing
hopping the gap states are created and further features are weakened.

implementation is optimized toward the limit of maximum validity at a minimal cost and
affordable amount of computational effort. An analysis of the numerical validity in terms of
the normalized and frequency integrated density of states

Ni(�L) :=
∫

dωN (ω, �L) = 1 (12)
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Figure 5. Atomic frequency integrated density of states Ni(�L), see
equation (12), which is normalized to 1. Numerical evaluation for various
induced hopping strengths T/D as shown, onsite repulsion strength is U/D =

4.0 and E/D = 1. The deviations from the value 1 are a measure for the range of
validity of the numerics. The dashed horizontal line marks 90% of the norm
result, Ni(�L) above the line indicates a numerical error of less than 10%,
considered as valid result.

can be found in figure 5. As a function of the lattice oscillation frequency h̄�L, the numerical
value of the LDOS displays, deviations from its normalization constant 1. The larger the
deviation, the larger the encountered numerical error. In figure 5, Ni(�L) above the horizontal
dashed line indicates results with a numerical error of less than 10%, which we will consider
valid results here. For increasing hopping strengths T , the numerical accuracy is succeedingly
decreased (all other parameters remain unchanged) for small modulation frequencies �L. The
physical interpretation of the infinite increase of the number of Floquet–Keldysh–Green’s modes
contributing for small modulations �L indicate the AOC, see above. Even for the largest
considered T , numerical results for modulation energies h̄�L/D > 0.25 can be considered as
accurate within an error range of less than 10% for the used implementation.

In figure 7 we discuss the behavior of the LDOS, equation (9) and the occupation number
for increasing external modulation energy h̄�L. For frequencies h̄�L/D < 1 the behavior of the
ultracold Fermi gas changes from Mott insulating to liquid or conducting. Pronounced Floquet
side bands [25] develop and intersect in between the Hubbard bands. The Mott gap almost
disappears and a liquid or conducting regime is established, where the liquid density of states
can be continuously driven by the external modulation. For the occupation number of the gap
states a step-like behavior for long wavelength modulations is found which can be interpreted
as the absorption or emission of energy quanta (phonons). In the non-equilibrium fermionic
distribution function we derive that for long wavelength modulations the majority of fermions
resides in states below the Fermi edge (h̄ω = 0).

The two limiting regimes of small and large lattice modulations are separated by a cross-
over at h̄�L/D ' 1 (see figure 3). At the crossing, the modulation-induced Floquet side bands
are forced to intersect (thus crossing) in the gap and acquire a maximum of spectral weight (see
figure 6) in this area. Moreover the occupancy from the states right above the lower Hubbard
band is shifted towards states right below the upper Hubbard band and additionally the entire
gap is almost equally occupied. We further remark that the excitation behavior to reach the
upper Hubbard band at the crossing changes from virtual, i.e. successive absorption, to direct.

Right above the crossing, for external modulation frequencies h̄�L/D > 1, we find that the
liquid behavior is dramatically reduced. In the lower panels of figure 7 we discuss the LDOS
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Figure 6. Displayed is the non-equilibrium distribution function Fneq(ω, �L)

in equation (11), as a function of atomic energy h̄ω and external modulation
energy h̄�L. The parameters for this original insulating state are U/D = 4.0,

T/D = 2.0, E/D = 1.0. Note the behavior around external modulation energies
of h̄�L/D ' 1 in the gap region −1 < h̄ω/D < 1 (see also text).

and the distribution function for external frequencies above h̄�L/D = 1. Note here that above
the crossing the LDOS shows a significant change in the gap. The step-like structure vanishes
and exhibits for further increasing modulation energies h̄�L almost the behavior of a Mott
insulator with an unconventional occupation number in the Mott gap in conjunction with a weak
spectral weight there. Combining both, the discussion concerning the spectral weight and the
distribution number right above h̄�L/D = 1, we find a pronounced shift of occupation which
resembles a trapping of particles right below the upper Hubbard band, which is an inversion-
like situation. This means, atoms occupy energy states above the Fermi energy, especially in
the gap region, therefore establishing a population inversion as found and used in other systems
to start and maintain lasing behavior. The relaxation of the fermions is impossible because no
unoccupied states are within reach for emission processes of an integer number of phonons of
the periodic modulation. This effect establishes the atomic population inversion in the pumped
system and requests experimental verification. A utilization of the population inversion for other
experimental or technological methods might be rather promising, e.g. for phonon pumped
lasing. For significantly faster lattice vibrations of the confining potential the system is not able
to follow the perturbations and returns to a stationary state similar to equilibrium. The trapping
of the occupation is however preserved.

The closing of the Hubbard gap within an intermediate range of the external modulation
frequency is also observed by the calculated DC conductivity, which can be written in the form

σ DC(�L) = lim
ω→0

∑
m

Re σ0m(ω, �L) (13)

=

∑
m

8e2t2

2π 3

∫
dεN0(ε)

∫
dω ′

(
Im GR

0m(ε, ω ′, �L)
)2 ∂

∂ω ′
Fneq

0m (ω ′, �L),
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Figure 7. Displayed is Fneq(ω, �L), equation (11), together with the
corresponding LDOS N (ω, �L), equation (9), for parameters U/D = 4.0,
T/D = 2.0 E/D = 1.0 at a series of different external modulation frequencies,
h̄�L/D ∈ {0.3, 0.5, 0.7, 1.0, 1.3, 1.5, 2.0}, from panel (a) to (g). The band gap
in equilibrium has the width 2D, i.e. the hatched region −1 < h̄ω/D < 1. We
note that with increased modulation energies trapping effects of fermions in the
Mott gap (hatched area) can be observed. The behavior of the derivative of the
distribution function with respect to the frequency ω at the Fermi edge severely
influences the conductivity (see figure 8).

where e is the elementary charge, t the hopping amplitude and N0(ε) is the bare density of
states. The non-equilibrium distribution Fneq

0m (ω, �L) is defined by the relation

GKeld
0m (ω, �L) = − 2π i

[
1 − 2Fneq

0m (ω, �L)
] 1

π
ImGA

0m(ω, �L) (14)

Fneq
0m (ω, �L) =

1

2

(
1 +

1

2i

GKeld
0m (ω, �L)

ImGA
0m(ω, �L)

)
, (15)

where the Keldysh and the advanced component of the Green’s function result from the numeric
DMFT solution.

The numerical evaluation of the above DC conductivity σ DC(�L), equation (13), is
presented in figure 8. The parameters are the same as those given in the caption of figures 5
and 6. We find a strong dependency of σ DC(�L) with respect to the sign changes of the
distribution function Fneq

0m (ω, �L). The distinct global maximum in the range 16 h̄�L/D 6
1.75 accounts for the intermediate regime, where the absolute height is dominated by the value
of the LDOS at the Fermi edge. The somewhat less pronounced peak at larger frequencies
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Figure 8. DC conductivity σ DC(�L), equation (13), as a function of external
modulation energy h̄�L. The highest value σ DC corresponds to an external
frequency of h̄�L/D ' 1.3 (vertical line). The conductivity not only depends
on the absolute value of the LDOS but also on the sign of the derivative of the
distribution function Fneq(ω, �L). Parameters are the same as in figure 7. The
hatched area marks the energy region where two-phonon processes excite atoms
from the lower to the upper Hubbard band.

h̄�L/D > 2, however, is also attributed to the strong population inversion in the regime of
external lattice modulations. The dominant and lowest in energy process is a two phonon
process. Given the width of the gap 1/D = 2 for U/D = 4, an excitation energy of h̄�L/D = 1
will suffice to bridge the gap and to transfer fermions to the upper Hubbard band. The
conductivity in figure 8 also exhibits this behavior. The maximum of σ DC(�L) between 1 <

h̄�L/D < 2 reflects just this excitation behavior. Two phonons, each with energy h̄�L/D = 1,
are absorbed by one fermionic atom, therefore the atomic energy is increased by h̄ω/D = 2,
the amount of energy one atom resting at the upper edge of the lower Hubbard band needs
to be pumped to a state just above the lower edge of the upper Hubbard band. Consequently,
a fermion absorbing two phonons each with energy of h̄�L/D = 2 raises the atomic energy
by h̄ω/D = 4. A fermion at the lower edge of the lower Hubbard band gaining this amount in
energy is transferred to just below the upper edge of the upper Hubbard band. Finally, in figure 8
the form of the conductivity, equation (13), outside the interval 1 < h̄�L/D < 2 is caused by
higher Floquet bands involving more than two phonon processes or by excitation dynamics
between individual Floquet bands instead of in between the Hubbard bands. The dominant
contribution, however, is the lowest excitation in between the two equilibrium Hubbard bands.

4. Conclusion

A theory of ultracold fermionic atoms described by a Hubbard model including strong
repulsive interactions is discussed. The quantum criticallity is derived with periodic lattice
potential modulations which drive the considered system out of thermodynamical equilibrium.
By investigating a Floquet–Keldysh–Green’s function approach we find a cross-over at zero
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temperature between two limiting characteristics, the AOC for h̄�L/D → 0 and a quasi-
equilibrium solution for h̄�L/D → ∞. Pronounced side-bands lead to a rather complicated
density of states in the gap for h̄�L/D < 1, which indicates a transition to the liquid or
conducting regime right at the onset of the modulation. In the vicinity of the cross-over we
find a maximum of spectral weight inside the original excitation gap. For external frequencies
h̄�L/D > 1, population trapping in the gap is observed. Beyond, the system approaches an
equilibrium-like Mott insulator regime, which indicates that the system is not able to follow fast
perturbations.
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