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Abstract. We present a semi-analytical theory for light propagation in three dimensional, strongly scattering, disordered, 
anisotropic dielectrics. The anisotropy of the system is incorporated hy a tensor dielectric function. By starting at Maxwell's 
equations, we derive a general transport theory for light including transport quantities such as energy transport velocity, trans­
port mean free path and diffusion coefficient. This approach is hased on a fully vectorial treatment of the generalized kinetic 
equation and also incorporated a generalized Ward identity for these systems. Furthermore, self-interference contributions to 
the transport are included by means of a generalized localization theory based on a cooperon resummation first derived for 
electrons by VolUiardt and Wolfle [1]. Numerical evaluations will be presented. 
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INTRODUCTION 

Anisotropy and its effects on the propagation and the 
transport of electromagnetic waves in complex di­
electrics remains to be a very exciting and intensly 
studied subject [2, 3, 4, 5]. Despite its rather great 
importance on experiments and applications, such as 
diffusing optical tomography, the theoretical description 
often employs a large variety of approximations such 
as a reduction to scalar wave equations [5]. To over­
come the limitations of unnecessary approximations, 
we present here a theory of electromagnetic wave dif­
fusion in disordered anisotropic dielectrics, based on a 
fully vectorial treatment. Therefore, our approach also 
includes polarization effects and generalized existing 
theories of hght diffusion in disordered media e.g. in [6] 
and light localization effects as discussed in ref [7]. 

and describes the disordered medium by means of 
the homogeneous but anisotropic dielectric constant 
of the background medium £j and the corresponding 
and also anisotropic dielectric constant of the scatter-
ers £.5 through the position dependent function V{f) = 
Y.iiSg{r-R) which consists of a set of locahzed shape 
fimctions Sg{r) of the individual scatterers at random lo­
cations R within the disordered system. 

For a given particular disorder realization £(r) the 
solution of the wave equation, Eq. (1), is given in terms 
of the Green's tensor G'"{r,r') according to 

E,,{r) = JA'r'G">{rj')Ur')- (3) 

The disorder averaged Green's tensor regains trans-
lational invariance G'^{f) = {G'"{r,r')) and its Fourier 
transform GS" may be shown to obey 

MODEL 

We consider light propagation according to the wave 
equation for the electric field E as derived from 
Maxwell's equations and Fourier transformed from 
time t to light frequnecy a 

Gq = Go (9,0)) (4) 

where self-energy X? arises from scattering processes off 
the "scattering potential" {Es-et)V{r), see Eq. (2). The 
use of disorder averaged quantities is necessary in order 
to compare to experimentally measured data. 

- V x V x i « ( r ) + ffl2£(r)i«(r)=/«(r). (1) 

Here, X)(^) represents a general source of the hght field 
due to an external current J as Jmir) = —i(Ojm{r). The 
dielectric function e(r) has a tensor form, denoted by 
bold face characters, ft is given by 

e{f) = ei + {es-eb)V{f) (2) 

DISCUSSION 

Due to the translational invariance of the disorder av­
eraged quantities such as the Green's tensor, a trans­
port theory ought to be formulated in terms of correla­
tion functions and not in terms of single particle quanti­
ties. Therefore, we define the field correlation tensor (of 
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fourth rank) O^i »2 (ri, r2, rs, r4) as the disorder averaged 
product of non-averaged single particle Green's tensors 
as 

0« , ^ {h, h^hM) = {G""' {h, r3) ® G^ {hA)) (5) 

where the notation ...<g>... refers to the tensor product 
of two tensors of second rank, operating in the retarded 
and advanced subspace of the propagators, repectively. 

The Fourier transformed correlation tensor 
OS" - (2,ti) may be shown to obey the so-called 
Bethe-Salpter equation 

^^^(a") -GT®{GT [m-q' (E) 

Aq" 
{2K) 

y^,„{Q,Q.)^%,,{Q,Q.)\ 
3 'q,q (6) 

In order to derive the Bethe-Salpter eqution, Eq. (6), 
we introduced center of mass and relative frequencies 
Q, (o as well as momenta g, q, respectively, according 
to C0i_2 = co±Q/2 = (i)±,q\^2 = q±^/2 = q± and^3_4 = 
q' ± Q / 2 = q'±. The center of mass coordinates (g ,0 ) 
are associated with the time and position dependance 
of the diffusing modes of the energy density within the 
system, whereas the relative coordinates are associated 
with the single particle quantities, i.e. the frequency of 
the light field and its wave vector. 

From the Bethe-Salpeter equation, Eq. (6), we derive 
the so-called kinetic equation, which is analogous to the 
Boltzmann equation and given by 

= AGe'[ 0 +y^y2;^„oe'„], (7) 

with the shorthand notations 

^gco = ( f f l + Y )£*«) 

0 ( G | : 

(9) 

(10) 

(11) 

The solution of the transport equation, Eq. (7), is found 
with the help of a momnet expansion of the correlatioon 
tensor O itself, which is analogous to the so-called Pi 
approximation of the standard Boltzmann equation [8]. 
As final result of this solution scheme, we find e.g. the 
energy density correlation tensor displays the expected 
diffusion pole structure. From this structure, the diffusion 
coefficient may be extracted, which reads for instance for 
the bare diffusion 

with 
2c^£l 

the energy transport velocity vg = 
(g) +A(co)] and transport mean free 

path £7- = GiCpio/co . 

CONCLUSION 

In conlcusion, we have presented a microscopic theory 
of light propagation for disordered anisotropic media in­
cluding localization effects, based on a self-consistent 
resummation of cooperon, i.e. self-interference, contri­
butions. The vector character of electromagnetic waves 
is taken into account as well as dielectric anisotropy by 
means of a non-trivial dielectric tensor. Energy conser­
vation is incorporated by means of a Ward identity and 
expressions for transport quantities, such as the diffusion 
coefficient, are derived. 
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